1. Field of the Invention
The present invention relates to removing vapor molecules from a gas, usually carbon dioxide or nitrogen, and more particularly to circulating the gas through a cold trap where the vapor molecules condense.
2. Background Information
Sample concentrators are prevalent in virtually all liquid processing operations. Materials of interest are typically synthesized, modified, and purified in solution-based process steps. To recover these dissolved non-volatile materials as dry powders and/or to increase the concentration of compounds; vacuum centrifuges, freeze drying, or blow down concentrators are used. These are terms that are well known and defined in the art.
Typically a cold trap is utilized in concentration systems to scavenge evaporated solvent molecules from the gas or vacuum as they move from the higher concentration space inside a sample container to the low concentration space inside a solvent collection vessel of the cold trap.
Vacuum concentrators and freeze dryers require a powerful vacuum pump to produce the low levels of ambient pressure necessary to promote the ejection and escape of solvent molecules from the surface of the solution. These solvent molecules migrate by diffusion to the lower concentration region of the cold trap solvent collection container and condense into ice. Once melted, this trapped solvent can be safely eliminated by an approved hazardous waste disposal company as a liquid.
Blow-down concentrators create a continuous flow of a small amount of gas onto the surface of the liquid solution. The gas flow promotes the escape of solvent molecules from the solution container so that they can be carried away in the flow of used gas out an exhaust port. A blow-down unit is typically located inside a fume hood so that solvent vapors are carried outside and not released to the workspace.
Recent practice and policy mandates that all reasonable effort be used to recover solvent vapors which could harm the environment. Habitual use of a fume hood to dispose of solvent vapors has become irresponsible. Wherever possible, evaporated solvent is condensed and recovered in a liquid state and, as mentioned above, safely disposed by an approved hazardous waste disposal company.
When a typical cold trap is configured with a blow-down concentrator, the evaporated solvent molecules are carried along in a gas flow measured in liters per minute. This results in poor yields of condensed vapor molecules due to the fast moving gas residing for too little time in the typical cold trap. Such systems are impractical.
When recovery is sought from a cold trap, the thermodynamics of the cold trap requires that sufficient opportunity exists for energy removal from the vapor molecules such that they can condense to a liquid. In vacuum systems, the vapor molecules migrate from the sample to the cold trap by diffusion, a process which is inherently slow and therefore well-matched to cold trap requirements for good performance. However, because vacuum systems provide little means to accelerate the escape of solvent molecules from the sample liquid, the overall evaporation process is far slower than that achieved with application of aggressive blow-down techniques.
The present invention provides partitions or surfaces (used interchangeably herein) added to the inner chamber of a closed cold trap container. The partitions or surfaces create a lengthened path from inlet to outlet within the closed container. This increases the residence time of the “wet” vapor in the chamber providing more opportunity for the vapor molecules to condense through repeated contact with the chamber walls. “Wet” is defined as the incoming vapor comprising drying gas carrying solvent molecules that are to be removed (dried) from the incoming vapor.
Illustratively, the partitions or surfaces may form a spiral inclined plane where the wet vapor enters the partitioned path at or near the bottom of the chamber and circulates upward around the inside many times before exiting at the top. The exiting dry vapor may be heated and returned to and reused by the evaporation device producing the incoming “wet” vapor.
In other embodiments, the entry port may be distributed on the container from the top to the bottom, and the exit port may be likewise distributed from the top to the bottom, but the partitions or surfaces are arranged to form a path from the entry to the exit ports wherein the wet vapor interacts with substantially the entire cold surface area.
The present invention provides for an increased the path length of gas flow through a cold trap. The resulting increased residence time provides increased opportunity for vapor molecules in the gas to lose sufficient energy to condense in the trap whereby the vapor exiting the cold trap is drier than that entering. In one application the wet vapor is driven by the physical construction of the spiral surfaces toward the cold wall to increase the likelihood of condensing.
In other applications the partitions may include internal baffles that further lengthen the internal path of the vapor within the closed container cold trap.
The invention description below refers to the accompanying drawings, of which:
The spiral inclined plane 4 is made to abut the inner surface of the container 15, and the entire assembly 62 (
An example of a source of wet vapor might be a centrifugal evaporator 24 as illustrated in
In the centrifugal evaporator illustrated in
Although the vapor flow in
The efficiency of the condensation process is dependent largely upon a sufficiently low temperature at the interior walls of the cold trap to condense or freeze the solvent molecules in the flow 10 and a sufficiently long cold trap residence time for the vapor-ladened gas 16′ circulating within the cold trap. Dried gas 20 at the outlet 8 of the cold trap travels back to the centrifugal evaporator 24 by connecting tube 22.
If the user desires a specific gas environment during the drying process or make up gas to balance inevitable losses, gas may be introduced into the system at port 64 resulting in gas-flow 62. Because this is necessarily a closed system to prevent the escape of solvent molecules from solutions 30, a vent fitting 70 is provided behind a baffle 68 in the cold trap 2. The rate of make-up gas-flow 62 will create an equal rate of vent gas-flow 72. Because gas-flow 72 could still contain some uncondensed solvent molecules, a hose should be connected between vent fitting 70 and a convenient chemical fume hood facility (not shown). A charcoal filter (not shown) or other solvent scrubber could be inserted between the vent and fume hood if desired.
Referencing
To remove the frozen solvent 80 (
Alternatively, the tubes connecting to the inlet 6 and outlet 8 ports of the cold trap may be disconnected and connected directly to another cold trap that has no condensed material. The full cold trap may then be emptied and be ready for use when the replacement cold trap is full.
In the case of a concentrator system illustrated in
There may be other baffles along the spiral inclined plane to direct the vapor flow closer to the inner wall of the cooled canister 15 to promote condensation. Moreover, the slope (or pitch) of the incline 4 on all FIGs (the distance between the spirals) may be determined heuristically depending on the application.
It should be understood that above-described embodiments are being presented herein as examples and that many variations and alternatives thereof are possible. Accordingly, the present invention should be viewed broadly as being defined only as set forth in the hereinafter appended claims.
The present application is related to a provisional patent application filed Apr. 4, 2008, Ser. No. 61/042,456 entitled: “Design of Cold Trap to Increase Residence Time to Increase Condensation of Vapor Molecules,” and is of common ownership and inventorship. This provisional application is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61042456 | Apr 2008 | US |