Cold work steel alloy for the manufacture of parts by powder metallurgy

Abstract
The invention relates to a cold work steel alloy for the powder metallurgical manufacture of parts, in particular tools with improved functional quality. In order to simultaneously set the important property features of bend fracture strength, impact bending work and wear resistance at a high level, it is essentially provided according to the invention to use an alloy containing in percent by weight 1C2.05 to 2.65Cr6.10 to 9.80W0.50 to 2.40Mo2.15 to 4.70V7.05 to 9.0Nb0.25 to 2.45N0.04 to 0.32
Description


[0001] The invention relates to a cold work steel alloy for the manufacture of parts by powder metallurgy, particularly tools, with a high degree of toughness and hardness as well as resistance to wear and material fatigue.


[0002] As a rule, tools and tool parts are stressed in many different ways, which necessitates a corresponding property profile of the same. However, creating a particularly good suitability for one type of stress of the material is naturally associated with a deterioration of the resistance of the same to other stresses, so that in many cases several property features should be present at a high level for a high functional quality of a tool, in other words, the functional properties of a tool represent a compromise regarding the respective individual material values. However, for economic reasons there is a general desire to have tools or parts available with overall improved material properties.


[0003] Heavy-duty tool steel components consistently have a hard phase component of carbides and a matrix phase part accepting these, which phases depend on the chemical composition of the alloy, particularly regarding their proportions in the material.


[0004] With a conventional production with a solidification of the alloy in casting molds, its respective content of carbon and carbide-forming elements is limited due to the solidification kinetics because, with high contents, the carbides primarily precipitated from the melt result in a coarse, inhomogeneous material structure, thus creating poor mechanical properties and adversely affecting, or ultimately precluding, the material's workability.


[0005] In order on the one hand to make it possible to increase the concentrations of the carbide-forming elements and the carbon proportion with regard to an increased carbide proportion and thus an improved wear resistance of the material, while on the other hand still ensuring adequate workability, homogeneity and toughness of the parts or tools made therefrom, a manufacture of the same by powder metallurgy is to be provided.


[0006] A manufacture of materials by powder metallurgy (PM) essentially includes gas or nitrogen atomization or fragmentation of a steel melt into fine droplets which are solidified into metal powder at a high solidification rate, placing and compressing the metal powder into or in a capsule, sealing the capsule and heating and hot isostatic pressing (HIP) of the powder in the capsule to produce a dense, homogeneous material. A PM material produced in this way can be used directly as-HIPed for manufacturing parts or tools, or subjected beforehand to a hot working, e.g., by forging and/or rolling.


[0007] In terms of stress, highly stressed tools or parts, e.g., knives, punches, dies and the like simultaneously require the material to have resistance to abrasive wear, a high degree of toughness and resistance to fatigue. A high proportion of hard, optionally coarse carbides, preferably monocarbides, should be aimed for to reduce wear, although the toughness of the material is reduced with an increasing proportion of carbides. On the other hand, high matrix hardness and low crack initiation by carbide grains and nonmetallic inclusions promote resistance to fatigue, i.e., essentially the absence of cracking at very high pulsating or changing mechanical straining of the material.


[0008] As mentioned above, the functional quality of parts or tools represents a compromise between wear resistance, toughness and resistance to fatigue of the material in a thermally treated state. In terms of a general improvement in the quality of cold work steels, attempts have long been made in the technical field to improve the steel property profile as a whole.


[0009] Taking into account the requirements, the object of the present invention is to simultaneously increase the mechanical characteristics in a thermally treated state, i.e., the bend fracture strength, impact bending work and wear resistance of the tool steel material in a quality assured way.


[0010] This object is attained according to the invention with a cold work steel alloy containing in percent by weight:
2Carbon (C)2.05 to 2.65Silicon (Si) up to 2.0Manganese (Mn) up to 2.0Chromium (Cr)6.10 to 9.80Tungsten (W)0.50 to 2.40Molybdenum (Mo)2.15 to 4.70Vanadium (V)7.05 to 9.0 Niobium (Nb)0.25 to 2.45Cobalt (Co)  up to 10.0Sulfur (S) up to 0.3Nitrogen (N)0.04 to 0.22Nickel (Ni)  up to 1.50


[0011] and accompanying elements up to 2.6 and production-related impurities with the balance being iron (Fe) for the powder metallurgical manufacture of parts with a high degree of toughness and hardness as well as resistance to wear and material fatigue, in particular tools, which parts have an oxygen (O) content of less than 100 ppm and a content and configuration of nonmetallic inclusions corresponding to a K0 value of a maximum of 3 according to testing according to DIN 50 602.


[0012] The considerable improvements in the quality of the material according to the invention are achieved synergetically by alloy technology and process-related measures with regard to optimizing the microstructure as well as individual and overall properties of the microstructural phases.


[0013] It has been recognized that not only the carbide amount but also, for the same amount, the carbide morphology, are important for the toughness of the material, because this depends on the free length of path between the carbides in the matrix, i.e., the defect size. As far as the wear resistance is concerned, in the finished tool designated for use, the carbides should essentially be monocarbides, homogeneously distributed in the matrix and with a diameter of less than 10 μm, preferably less than 4 μm.


[0014] Vanadium and niobium are the most powerful carbide-formers and should be provided jointly in a concentration range of 7.05 to 9.0 percent by weight of V and 0.25 to 2.45 percent by weight of Nb, respectively for reasons of alloy technology. As a result, on the one hand a formation of monocarbides and, in particular, of advantageous (VNb) composite carbides, is achieved, and on the other hand, due to V and Nb there is such a carbon affinity in the material in these concentration ranges that the other carbide-forming elements chromium, tungsten and molybdenum are available in the concentrations according to the invention with the residual carbon for mixed crystal strengthening and increase the matrix hardness. Higher vanadium and/or niobium contents than 9.0 or 2.45 percent by weight, respectively, have the effect of reducing the matrix strength, and in particular reduce the fatigue resistance of the material, whereas lower contents than 7.05 percent by weight of V and/or 0.25 percent by weight of Nb lead to increased formation of softer carbide phases such as M7C3 carbides, as a result of which the wear resistance of the steel is reduced.


[0015] With a carbon content in the narrow range of 2.05 to 2.65 percent by weight and the concentrations of the monocarbide-formers according to the invention, the secondary hardness potential of the alloy can be utilized during heat treatment and the retention of hardness of the same can be improved, particularly with 0.5 to 2.4 percent by weight of tungsten and 2.15 to 4.70 percent by weight of molybdenum. Chromium with contents of 6.10 to 9.80 percent by weight is provided for a mixed crystal strengthening, with nitrogen in a proportion of 0.04 to 0.22 percent by weight to increase the secondary hardness and the matrix hardness of the tool steel being essential for the invention.


[0016] Higher, as well as lower contents than those given in the limits according to the invention for the elements tungsten, molybdenum and chromium, respectively disturb the synergy and reduce at least one property of the tool steel, and thus to some extent can have an adverse effect on its usability.


[0017] As mentioned at the outset, in addition to the requirements of alloy technology, the production technology measures are also essential to achieve a high functional quality of a part or of the tool. Since in terms of high material toughness a local accumulation of possibly coarser carbides, a so-called carbide cluster formation, should be avoided in the hot isostatically pressed material because of a minimization of defect sizes, in the powder metallurgical manufacture or in the powder production, the powder grain size distribution should be controlled process-technologically such that at least 60% of the powder grains have a particle size of less than 100 microns (μm). As has been found, a high solidification rate of the melt droplets associated with small metal powder particles results in an even distribution of fine monocarbides and, regarding the carbon content, a supersaturated basic mass in the powder grain.


[0018] During hot isostatic pressing and during an optionally provided hot working of the compact, the degree of supersaturation of the basic mass is reduced due to the diffusion at high temperature, the fine, round monocarbides grow as desired up to a size of less than 10 μm, with the other alloy elements being largely specifically incorporated into the mixed crystal and ultimately strengthening the matrix. Through this manufacturing technology, the carbide morphology is controlled with regard to the smallest defect size and the matrix composition in the direction of maximizing the secondary hardness potential, given the composition of the material according to the invention. In this context, the provided niobium concentration for the controlled grain growth should be mentioned again because of its importance.


[0019] The degree of oxidic purity of the material according to the invention is of particular significance, because not only its mechanical properties may be compromised by nonmetallic inclusions, but also because these nonmetals may also cause detrimental seeding effects during solidification and heat treatment of the material. It is thus essential to the invention for a highly pure alloy to be atomized by means of nitrogen having a degree of purity of at least 99.999% nitrogen and a physisorption of oxygen at the powder grain surface to be avoided until enclosed in a capsule, as a result of which the HIPed material has an oxygen content of less than 100 ppm and a content and configuration of nonmetallic inclusions corresponding to a K0 value of a maximum of 3 according to testing according to DIN 50 602.


[0020] Preferred embodiments are characterized in the dependent claims. The invention will be explained in further detail on the basis of results from comparative studies.






[0021] Shown are:


[0022] Table 1 The chemical composition of the steel alloy according to the invention and of comparative steel alloys


[0023] Table 2 Measured values determined by means of the mechanical testing of the steel alloys


[0024]
FIG. 1 Measuring arrangement for determining bend fracture strength


[0025] FIG. Sample shape for determining the impact bending work


[0026]
FIG. 3 Device for measuring wear resistance (mechanical diagram)


[0027]
FIG. 4 Comparison of the bend fracture strength of the steel alloys


[0028]
FIG. 5 Comparison of the impact bending work


[0029]
FIG. 6 Comparison of the respective wear resistance of the steel alloys






[0030] Table 1 shows the chemical composition of a cold work steel alloy according to the invention (alloy A) and those of the comparative alloys (B through J).


[0031] The test results for bend fracture strength, impact bending work and wear resistance of alloy A according to the invention and of comparative alloys B through J are given in Table 2.
3TABLE 1% byweightAlloy A *Alloy BAlloy CAlloy DAlloy EC2.442.552.492.422.61Si0.981.050.951.120.97Mn0.520.530.490.550.66Cr6.226.936.126.276.08W1.410.952.741.301.06Mo3.983.953.784.003.60V8.127.857.927.886.77Nb1.191.151.121.861.45S0.0080.0110.030.0120.028N0.0950.080.064Co0.4<0.1<0.1Ni0.70.430.170.280.89O0.00910.0320.041% byweightAlloy FAlloy GAlloy HAlloy IAlloy JC2.632.522.442.492.30Si1.130.870.940.630.32Mn0.710.550.500.320.31Cr6.216.285.664.1912.31W1.502.220.053.680.35Mo3.985.051.313.211.17V7.838.209.848.723.94Nb0.610.90.01S0.0090.0390.070.010.013N0.090.060.0750.0380.13Co0.130.0380.04Ni0.510.760.36O0.0680.0440.0540.0098* Alloy A = alloy according to the invention


[0032]

4










TABLE 2












Bend fracture
Impact





strength
bending





(N/mm2)
work (J)
Wear resistance




Four point
unnotched
(l/g) against



Alloy*
bending test
sample
SiC emery paper




















Each thermally
Alloy A
4843
43.5
14.7


treated to a
Alloy B
4487
34
14.5


hardness of
Alloy C
4524
35
14.3


61 HRC
Alloy D
4636
36.8
14.15



Alloy E
4720
39.9
13.1



Alloy F
4825
43
12.8



Alloy G
4585
35
14.35



Alloy H
4716
36
14.73



Alloy I
4845
44
13.80



Alloy J
4468
33
11.86






*Alloy A = alloy according to the invention








[0033] The bend fracture strength of the steel alloys was determined on round samples (Rd=5.0 mm) heat-treated to 61 HRC in a device according to FIG. 1. The initial force F was 200 N, the rate up to initial force was 2 mm/min and the testing rate was 5 mm/min.


[0034] The tests of the impact bending work of the respective steel alloys were done with samples having the shape according to FIG. 2.


[0035]
FIG. 3 shows diagrammatically the device for determining the wear resistance.


[0036] If the bend fracture strength of alloy A according to the invention is compared to that of the comparative alloys (B through J) (Table 2) shown in a bar chart in FIG. 4, alloys E, F, H and I show equally high values, with alloy I having the highest bend fracture strength.


[0037] In a comparison of the respective impact bending work (FIG. 5) of the cold work steel alloys, alloy I again has the highest value. The measurement data for alloy A according to the invention and alloy F exhibit slightly lower values for this mechanical property.


[0038] The results of the tests of the wear resistance of the alloys are compared in a graphic representation in FIG. 6, with the highest values being determined for alloy H and alloy A according to the invention.


[0039] It can be seen from the test results that the important properties: bend fracture strength, impact bending work and wear resistance of a cold work steel alloy according to the invention all are at a high level and characterize this new alloy.

Claims
  • 1. Cold work steel alloy containing in percent by weight:
  • 2. Cold work steel alloy according to claim 1, which has one or more element(s) with the following concentration value(s) in percent by weight:
  • 3. Cold work steel alloy according to claim 1 or 2, which has one or more element(s) with the following concentration value(s) in percent by weight:
  • 4. Method for a powder metallurgical manufacture of a part or a tool made from a cold work steel alloy containing in percent by weight:
Priority Claims (1)
Number Date Country Kind
587/2001 Apr 2001 AT