BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a cellular wireless network where a plurality BTS's are deployed among a plurality of cells.
FIG. 2 illustrates a flowchart showing a method of downlink transmission in accordance with one embodiment of the present invention.
FIG. 3 illustrates a flowchart showing a method of determining serving BTS's for collaborative beam forming in accordance with one embodiment of the present invention.
FIG. 4 illustrates a flowchart showing a method of determining serving BTS's for collaborative beam forming in accordance with another embodiment of the present invention.
FIG. 5 illustrates a flowchart showing an uplink transmission in accordance with one embodiment of the present invention.
DESCRIPTION
This invention describes a method that reduces interference and enhances signal strength for a wireless cellular network. The following merely illustrates various embodiments of the present invention for purposes of explaining the principles thereof. It is understood that people skilled in the art will be able to devise various equivalents that, although not explicitly described herein, embody the principles of this invention.
FIG. 1 illustrates cellular wireless network 100 where a plurality of BTS's are deployed among a number of cells 102 making up an overall area of coverage in accordance with one embodiment of the present invention. Each BTS is designated with a predetermined frequency bandwidth for transmitting or receiving signals to or from a plurality of MS's within the cell, in which the BTS is deployed. A frequency reuse scheme can be used in the network 100 to assign neighboring BTS's with various frequency bands in order to increase its system capacity and frequency reuse efficiency. Each BTS or MS may be implemented with a plurality of antennas in order for supporting multiple-input multiple-output (MIMO) communications.
The BTS's are also linked to an element management system (EMS) that controls the BTS's to form uplinks and downlinks with the MS's, using a beam forming technology. For example, a MS located at the boundary of cells deployed with BTS 1, BTS2, and BTS 3 transmits/receives signals to/from BST 1 as a primary source, with BTS 2 and BTS 3 as secondary sources if certain criteria. Beam forming will be performed for BTS 1, BTS 2 and BTS 3, such that BTS 2 and BTS 3 become signal sources that strengthen the signals received by the MS, instead of sources of interference as they would have been, had they functioned according to conventional schemes.
FIG. 2 illustrates a flowchart explaining a method of downlink transmission for a wireless cellular network in accordance with one embodiment of the present invention. Referring simultaneously to FIGS. 1 and 2, at step 202, the MS detects signal strength of signals received from a number of BTS's, such as BTS 1, BTS 2, BTS 3, and BTS 7, located at its vicinity. At step 204, the MS selects one or more candidate serving BTS's for potentially forming downlinks with the MS based on predetermined criteria taking into account of the detected signal strength. For example, the MS selects BTS 1, BTS 2, and BTS 3 as candidate serving BTS's for potentially forming downlinks with the MS if their corresponding signal strength is higher than a predetermined value, and disregards BTS 7 if its signal strength is lower than the predetermined value. It is noted that there are various criteria can be used for selecting the candidate serving BTS's. These criteria will be described in further detail in the following paragraphs.
At step 206, the MS transmits signals containing information indicating the selected candidate serving BTS's to a first group of serving BTS's that currently form downlinks with the MS. These current serving BTS's may not be the same as the selected candidate serving BTS's. At step 208, the information indicating the selected serving BTS's is forwarded by the current downlink serving BTS's to the EMS. For example, although the MS may select BTS 1, BTS 2, and BTS 3 as the candidates, it may transmit the indicating signals to BTS 1, BTS 3, and BTS 4 that currently communicate with the MS through downlink channels. BTS 1, BTS 3 and BTS 4 then forward the information indicating that BTS 1, BTS 2 and BTS 3 have been selected as candidate serving BTS's to the MS.
At step 210, the EMS selects a second group of serving BTS's from the candidate serving BTS's based on the information forwarded by the current serving BTS's and on its own selection criteria, such as balancing system resources. The ESM also determines beam forming weighing factors for the selected second group of serving BTS's. For example, the MS may select BTS 1 and BTS 2 as the second group of serving BTS's and disregard BTS 3, even though it is also one of the selected candidate serving BTS's.
At step 214, the EMS transmits control signals containing information of the second group of the serving BTS's and their corresponding beam forming weighing factors to the current serving and candidate serving BTS's in order for rearranging the first group of the current serving BTS's into the second group of the selected serving BTS's for establishing new downlinks with the MS. For example, the control signals are transmitted from the EMS to BTS 1, BTS 3, and BTS 4, the first group of current serving BTS's, and to BTS 2 and BTS 3, the selected candidate serving BTS's. Since the second group of BTS's only includes BTS 1 and BTS 2, the current serving BTS 3 and BTS 4 that do not belong to the second group are deactivated from serving the MS though downlink channels upon receiving the control signals. The BTS that belongs to the second group of serving BTS's, but do not belong to the first group of current serving BTS's, such as BTS 2, is activated to form downlink channels with the MS upon receiving the control signals. A beam forming technology is performed for BTS 1 and BTS 2 to form downlink channels with the MS simultaneously, using the beam forming weighing factors determined by the EMS. It is understood that various implementations the beam forming schemes can be made without undue experimentation by people skilled in the art of telecommunications. As such, detailed description of such implementations is omitted from the present disclosure.
In this embodiment, the second group of serving BTS's then notify the MS of the rearrangement of BTS's through downlink channels. This can be done by transmitting one bit in the downlink message, using “1” to indicate that collaborative beam forming is employed, and “0” to indicate that only one BTS is serving the MS. It is noted that, as an alternative, the second group of serving BTS's can be simply activated to form downlink channels with the MS without utilization of any notification bit.
FIG. 3 illustrates a flowchart showing a process of determining serving BTS's for collaborative beam forming based on a predetermined criterion in accordance with one embodiment of the present invention. The process starts at step 302, and then proceeds to step 304 where a variable i is set as 1. At step 306, the signal strength received by the MS from the BTSi is compared to a predetermined threshold value T. If the signal strength is determined to be greater than the predetermined threshold value T, the process proceeds to step 308 where BTSi is marked as a candidate serving BTS. If the signal strength is determined to be smaller than the threshold vale T, the process proceeds to step 310 where the variable i is set to be equal to i+1. At step 312, the value i is compared to a predetermined value n, which denotes, for example, a total number of BTS's in a predefined vicinity of the MS. If i is smaller or equal to n, the process goes back to step 306. If i is greater than n, the process ends at step 314. This process selects candidate BTS's based on the criterion that the selected BTS's have signal strength greater than a predetermined threshold.
FIG. 4 illustrates a flowchart showing a process of determining serving BTS's for collaborative beam forming based on a predetermined criterion in accordance with another embodiment of the present invention. The process starts at step 402, and then proceeds to step 404 where a variable m is set as 1. At step 406, a m number of BTS with the highest SNR is selected from a group of BTS's [BTS 1, BTS 2, . . . BTSn]. In case where m equals to 1, only one BTS with the highest SNR is selected from [BTS 1, BTS 2, . . . BTSn]. At step 408, the SNRs of all the selected BTS's are added up and converted into the same metric as SNR. The result is compared to a predetermined threshold value T. If the result is greater than T, the process proceeds to step 410 where the selected BTS is marked as the candidate serving BTS's at step 410. If the result is smaller than T, the process proceeds to step 412 where m is set to be m+1. This process selects candidate BTS's based on the criterion that the BTS's with the highest aggregate SNR that is greater than the predetermined threshold value are selected.
FIG. 5 illustrates a flowchart explaining a method of uplink transmission in accordance with one embodiment of the present invention. Referring simultaneously to FIGS. 1 and 5, at step 502, a number of BTS's at a predefined vicinity of the MS periodically monitors the signal strength received from the MS. At step 504, information containing the signal strength report is transmitted to the EMS though a first group of current uplink serving BTS's. The EMS selects a second group of serving BTS's based on the signal strength report at step 506. The current uplinks serving BTS's are rearranged based on the second group of the serving BTS's, using process steps similar to that for rearranging the downlink serving BTS's, at step 508. It is noted that the uplink and downlink serving BTS's need not to be the same. It is also noted that the processes detailed in reference to FIGS. 3 and 4 can be used as criteria for selecting the uplink serving BTS's as well.
This method is a multi-cell interference reduction and signal enhancement technique based on adaptive collaborative BTS beam forming and dynamic BTS selection. It is applicable to any multiple access technologies, such as FDD, TDD, FDMA, TDMA, MC-CDMA, OFDM-MA and any combination of them.
The above illustration provides many different embodiments or embodiments for implementing different features of the invention. Specific embodiments of components and processes are described to help clarify the invention. These are, of course, merely embodiments and are not intended to limit the invention from that described in the claims.
Although the invention is illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention, as set forth in the following claims.