Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era

Information

  • NSF Award
  • 2229075
Owner
  • Award Id
    2229075
  • Award Effective Date
    1/1/2023 - a year ago
  • Award Expiration Date
    12/31/2025 - a year from now
  • Award Amount
    $ 200,000.00
  • Award Instrument
    Standard Grant

Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era

The accelerated transition to renewable energy and the rapid modernization of power systems with smart Internet-of-Thing (IoT) devices have presented new integration challenges and made the systems highly vulnerable to new cyberthreats. These challenges and risks underscore the urgent need for more advanced and robust state and situation awareness that are essential to the early detection and mitigation of grid incidents. This project aims to establish a novel collection of quantum architectures, algorithms, and mathematical tools for quantum era power system state estimation (SE), a critical process in supervisory control and data acquisition (SCADA) systems. By capitalizing on the recent breakthroughs and real-world applications in quantum computing and quantum networking, the project investigates how the massive power of quantum computing can provide more rapid and accurate responses to changes in the systems. Further, the project leverages quantum networking to provide data communication with high confidentiality and integrity, raising the power grid security to the next level. This project will have broad community and societal impacts through open-source software release and the education and training of the next generation of engineers, particularly those from underrepresented groups in STEM.<br/><br/><br/>The goal of this project is to develop a holistic quantum-inspired framework for power state estimation, addressing the cyber risks and operational challenges for decentralized grids. Towards this goal, four main research activities include 1) Quantum network architecture - designing a network and service-oriented architecture and protocols to implement the quantum key distribution and to handle the confidential communications in smart grids; 2) Quantum computing for SE - developing timely and high-efficient solutions for power state estimation, including efficient preprocessing, optimizing Ising Hamiltonian, hardware-embedding, and annealing; and 3) Distributed quantum systems for SE - proposing a robust and trust-worthy distributed system state estimation with a support of quantum networking, quantum computing, and advanced deep learning methods. 4) Assessment - deploying, testing, and conducting comprehensive performance assessment of the proposed framework based on a quantum cyber-physical testbed to support the state estimation in smart grids enabled by quantum networking and computing technologies. This project will lay the mathematical and algorithmic foundation for the application of quantum technologies in smart grids.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

  • Program Officer
    Yulia Gelygel@nsf.gov7032927888
  • Min Amd Letter Date
    8/8/2022 - a year ago
  • Max Amd Letter Date
    8/8/2022 - a year ago
  • ARRA Amount

Institutions

  • Name
    Virginia Commonwealth University
  • City
    RICHMOND
  • State
    VA
  • Country
    United States
  • Address
    912 W FRANKLIN ST
  • Postal Code
    232849040
  • Phone Number
    8048286772

Investigators

  • First Name
    Thang
  • Last Name
    Dinh
  • Email Address
    tndinh@vcu.edu
  • Start Date
    8/8/2022 12:00:00 AM

Program Element

  • Text
    AMPS-Algorithms for Modern Pow

Program Reference

  • Text
    QUANTUM INFORMATION SCIENCE
  • Code
    7203
  • Text
    COMPUTATIONAL SCIENCE & ENGING
  • Code
    9263