Collaborative Research: CAS: Mechanistic Studies on Fe-Type Nitrile Hydration Catalysts

Information

  • NSF Award
  • 2204024
Owner
  • Award Id
    2204024
  • Award Effective Date
    9/1/2022 - a year ago
  • Award Expiration Date
    8/31/2025 - a year from now
  • Award Amount
    $ 208,879.00
  • Award Instrument
    Standard Grant

Collaborative Research: CAS: Mechanistic Studies on Fe-Type Nitrile Hydration Catalysts

With the support of the Chemistry of Life Processes program in the Division of Chemistry, Professors Brian Bennett and Adam Fiedler from Marquette University and Professor Richard Holz from the Colorado School of Mines will investigate the chemical function of the enzyme nitrile hydratase (NHase), which catalyzes the reaction of nitrile compounds with water (hydration) to give the corresponding amides. NHases hydrate a range of natural and synthetic nitriles with strict selectivity under mild conditions. As such, these enzymes have several industrial and pharmaceutical applications, including the removal of chemicals and pesticides from the environment. To expand the biocatalytic potential of NHases, a better understanding of the catalytic mechanism is essential. Professors Bennett, Fiedler and Holz will employ a combination of experimental and computational approaches to detect and probe intermediates generated during the hydration reaction. In addition, the assembly of the enzyme active site, which contains a cobalt or iron ion, will be examined. The project will provide exceptional training for undergraduate and graduate-level scientists. The emphasis on green chemistry and biophysical methods will serve as the basis for community engagement activities. The award will also enhance the research and educational infrastructures at both Marquette University and the Colorado School of Mines. <br/><br/>This research project seeks to gain molecular-level insights into NHase catalysis through a combination of kinetic, spectroscopic, biochemical, computational, and X-ray crystallographic methods. The studies will (i) test competing prevailing mechanistic hypotheses and refine the catalytic mechanism by interrogating observed intermediates, (ii) determine the catalytic function of proton transfer and the protonation states of ionizable groups in the active site, and (iii) elucidate steps in the maturation process of the metal-based (Fe or Co) active sites. The insights gained from the studies are expected to aid in the development of green catalytic approaches to hydrolytic reactions in nature and industry.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

  • Program Officer
    Catalina Achimcachim@nsf.gov7032922048
  • Min Amd Letter Date
    8/15/2022 - a year ago
  • Max Amd Letter Date
    8/15/2022 - a year ago
  • ARRA Amount

Institutions

  • Name
    Colorado School of Mines
  • City
    GOLDEN
  • State
    CO
  • Country
    United States
  • Address
    1500 ILLINOIS ST
  • Postal Code
    804011887
  • Phone Number
    3032733000

Investigators

  • First Name
    Richard
  • Last Name
    Holz
  • Email Address
    rholz@mines.edu
  • Start Date
    8/15/2022 12:00:00 AM

Program Element

  • Text
    Chemistry of Life Processes
  • Code
    6883

Program Reference

  • Text
    CAS-Critical Aspects of Sustainability
  • Text
    Biotechnology
  • Code
    8038