Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications

Information

  • NSF Award
  • 2404874
Owner
  • Award Id
    2404874
  • Award Effective Date
    10/1/2023 - 8 months ago
  • Award Expiration Date
    9/30/2026 - 2 years from now
  • Award Amount
    $ 239,999.00
  • Award Instrument
    Standard Grant

Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications

In the new era of AI, modern computing electronics are facing tremendous challenges when a large amount of computing tasks, e.g. robotics, AR/VR, autonomous driving, require supports of gigantic computing models and enormous computing workloads. Such demands have dwarfed the capabilities of existing electronic hardware. As CMOS technology approaches 1 nm node, it is obvious that the conventional technology scaling will soon run out of steam to meet the ever-growing demand of computing power. To continue the Moore’s law, HfO2 based ferroelectric field effect transistor (FeFET) is one of the leading candidates with benefits of combined nonvolatility, high energy efficiency, and compatibility with CMOS. While many device-level developments have been performed on FeFET, one of the hindering factors is that the device’s development is often performed at small scale without high-level integration with CMOS technology, which is necessary to deliver a complete integrated-circuit (IC) solution for supporting the modern computing tasks. To overcome the limitation of existing developments, this proposal will develop cross-layer techniques from device to circuit and architecture enabling large-scale integration of the highly promising FeFET device with standard CMOS technology. <br/><br/>This project will perform full-stack developments from device to architecture for the integration of CMOS and FeFET technology targeting emerging computing applications. Fabricated FeFET with CMOS at advanced technology nodes at a large scale will be used to demonstrate the proposed techniques. More specifically, we will perform the following developments. At device level, improved process for integration between nFeFET, pFeFET and CMOS will be developed allowing better technology fusion of the FeFET and CMOS devices; At design methodology, a joint device-circuit collaborative design flow will be developed to tailor the FeFET technology towards the need of emerging computing applications such as AI; Furthermore, novel circuit and architecture utilizing FeFET as both memory and computing devices will be developed to exploit the features of FeFET and its co-existence with CMOS technology; Finally, demonstrations on complex processors and accelerators for emerging applications, with joint CMOS and FeFET technology will be delivered to showcase the benefits of the emerging device integrated with CMOS. The integrative approach and demonstration of CMOS and FeFET fusion will manifest the system perspective of FeFET devices and establish a solid foundation for the future FeFET developments especially for the emerging computing tasks. By integrating the advanced semiconductor technology with emerging computing tasks, the proposed projects provide strong educational materials and opportunities for students to learn the multi-disciplinary developments of modern computing techniques and microelectronic devices. Both course materials and workshops on frontier semiconductor and computing techniques will be developed to provide solid training to the society while also promoting diversity and inclusion to college STEM education.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

  • Program Officer
    Ale Lukaszewrlukasze@nsf.gov7032928103
  • Min Amd Letter Date
    3/26/2024 - 2 months ago
  • Max Amd Letter Date
    3/26/2024 - 2 months ago
  • ARRA Amount

Institutions

  • Name
    University of Notre Dame
  • City
    NOTRE DAME
  • State
    IN
  • Country
    United States
  • Address
    836 GRACE HALL
  • Postal Code
    465566031
  • Phone Number
    5746317432

Investigators

  • First Name
    Kai
  • Last Name
    Ni
  • Email Address
    kni@nd.edu
  • Start Date
    3/26/2024 12:00:00 AM

Program Element

  • Text
    CCSS-Comms Circuits & Sens Sys
  • Code
    7564