Collaborative Research: SaTC: CORE: Medium: ONSET: Optics-enabled Network Defenses for Extreme Terabit DDoS Attacks

Information

  • NSF Award
  • 2415754
Owner
  • Award Id
    2415754
  • Award Effective Date
    10/1/2023 - 7 months ago
  • Award Expiration Date
    12/31/2025 - a year from now
  • Award Amount
    $ 382,241.00
  • Award Instrument
    Standard Grant

Collaborative Research: SaTC: CORE: Medium: ONSET: Optics-enabled Network Defenses for Extreme Terabit DDoS Attacks

Distributed Denial of Service (DDoS) attacks continue to present a clear and imminent danger to critical network infrastructures. DDoS attacks have increased in sophistication with advanced strategies to continuously adapt (e.g., changing threat postures dynamically) and induce collateral damage (i.e., higher latency and loss for legitimate traffic). Furthermore, advanced attacks may also employ reconnaissance (e.g., mapping the network to find bottleneck links) to target the network infrastructure itself. In light of these trends, state-of-art defenses (e.g., advanced scrubbing, emerging software-defined defenses, and programmable switching hardware) have fundamental shortcomings. This project will develop a new framework, referred to as "Optics-enabled In-Network defenSe for Extreme Terabit DDoS attacks" (ONSET). The framework makes a case for new dimensions of defense agility that can programmatically control the topology of the network (in addition to the processing behavior) to tackle advanced and future attacks. The project will facilitate the use of optical technologies as an exciting visual medium for engaging K-12 students via suitable channels for dissemination. The project will also result in new course materials at the intersection of optical networking, software-defined networking, and network security to enable students to become domain experts in this emerging problem space. <br/><br/>The project will take an interdisciplinary approach spanning security, optics, systems, and networks, to address fundamental challenges along three thrusts: (1) novel "data plane" solutions to rapidly reconfigure the wavelengths and switches and new capabilities in programmable switches to rapidly identify malicious vs. benign traffic at line rate; (2) novel "control plane" orchestration mechanisms for scalable resource management algorithms and coordinated control across optical networking and programmable switches; and (3) new "northbound application programming interfaces (APIs)" to express novel defenses to combat current and future DDoS attacks (e.g., with reconnaissance). This project will develop a new framework, referred to as "Optics-enabled In-Network defenSe for Extreme Terabit DDoS attacks" (ONSET). The research efforts will result in end-to-end prototypes using open-source and standardized interfaces to demonstrate the novel defense capabilities of ONSET. The efficacy of ONSET will be evaluated using pilot studies on operational networks to create a roadmap to practical deployment, using real testbeds and large-scale simulations. The project outcomes will be released as open-source software tools, models, and simulation frameworks that will inform industry and academic work.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

  • Program Officer
    Xiaogang (Cliff) Wangxiawang@nsf.gov7032922812
  • Min Amd Letter Date
    3/21/2024 - 2 months ago
  • Max Amd Letter Date
    3/21/2024 - 2 months ago
  • ARRA Amount

Institutions

  • Name
    University of Maryland, College Park
  • City
    COLLEGE PARK
  • State
    MD
  • Country
    United States
  • Address
    3112 LEE BUILDING
  • Postal Code
    207425100
  • Phone Number
    3014056269

Investigators

  • First Name
    Zaoxing
  • Last Name
    Liu
  • Email Address
    zaoxing@umd.edu
  • Start Date
    3/21/2024 12:00:00 AM

Program Element

  • Text
    Secure &Trustworthy Cyberspace
  • Code
    8060

Program Reference

  • Text
    SaTC: Secure and Trustworthy Cyberspace
  • Text
    MEDIUM PROJECT
  • Code
    7924