1. Field of the Invention
The present invention relates to collapsible bags for dispensing liquid products, and more particularly to collapsible bags having a internal surfaces which provide passageways for the removal of liquid.
2. Background Art
Various collapsible bags or containers are known in the prior art which are adapted to be filled with liquid contents and sealed and which allow their liquid contents to be suction withdrawn through their annular spouts or fitments. The walls of the bag are typically sheets of plastic, which are typically formed of polyethylene, polypropylene, nylon, or polyester. The liquid contents can be juices, milk, drink syrups or other liquids such as photoprocessing solutions, cleaning chemicals, or cocktail mixes. An example of these collapsible bags is the so-called “bag-in-box” commonly used in the soft drink industry to deliver the drink syrup to the dispensing machine. The bags are fed into filling machines which uncap them, fill them with the syrup (or other liquid), recap them and box them. The boxes structurally support the bags during storage, shipment, and as they are being emptied. The bags are emptied through a spout in the bag accessible through a hole in the box and using a pump.
A plastic dip tube or dip strip disposed in the bag and secured therein so as to pass over the spout opening or to be secured to the spout opening assists in the withdrawal of the syrup from the bag. The strip prevents the bag from collapsing on the opening and closing it, and also guides the remaining quantities of syrup in the bag to the opening as the syrup continues to be withdrawn. The strip can be attached to the spout and/or to the inside wall of the plastic bag. Alternatively, the dip tube or dip strip can be attached to the perimeter seal of the bag. Examples of dip tubes or dip strips and their collapsible bags are shown in U.S. Pat. No. 4,286,636 (Credle), U.S. Pat. No. 4,601,410 (Bond), U.S. Pat. No. 5,647,511 (Bond), U.S. Pat. No. 5,915,596 (Credle), and U.S. Pat. No. 5,941,421 (Overman et at.) and in WO 99/46,169 (Coca-Cola Company). (All of the patents and other 30 publications mentioned anywhere in this disclosure are hereby incorporated by reference in their entireties.)
In addition to the separate manufacturing step required to make the dip tube or dip strip and the attendant material required to make the dip tube or dip strip, the application to the bag of a dip tube or dip strip requires yet another separate manufacturing step. Generally, after the spout is secured to the bag, the dip tube or dip strip is disposed in the bag by attachment to the spout, the inside wall of the bag or to the perimeter seal of the bag, or a combination of the above. This adds to the manufacturing time and expense. A further disadvantage of the strips, in addition to the cost of manufacturing them, is that they may become dislodged when the bag is filled at high pressure. A still further disadvantage of the strips is that they may create a back pressure and reduce fill rates.
Certain solutions have provided indentations within the walls of the material. While this has met with some success, there remain drawbacks. First, the indentations or passageways that are associated with the walls are often not suitable for the evacuation of more viscous liquids, such as syrups. Moreover, other such solutions are generally incapable of withstanding the forces associated with the suction evacuation process, such that the passageways generally collapse prior to evacuation.
It is another object of the invention to overcome shortcomings of the prior art identified above.
These and other objects of the invention will become apparent in light of the specification and claims appended hereto.
The invention comprises a collapsible bag for dispensing liquids, including viscous liquids such as syrup and the like. The bag comprises a first wall and a second wall, a spout, a surface variation defining a minimum unstressed volume. The first wall and the second wall together to define a fluid chamber therebetween. The first wall and the second wall each have an inner surface facing the fluid chamber and an opposed outer surface. The spout is attached to one of the first and second walls and has an opening therethrough having an axis substantially perpendicular to the one of the first and second walls to which it is attached. The surface variation is molded into at least a portion of the first wall and at least a corresponding portion of the second wall. The surface variation limits contact between the inner surfaces of the first wall and the second wall so as to define a minimum unstressed volume therebetween. At least a portion of the minimum unstressed volume is maintained substantially throughout evacuation of liquid therefrom by suction.
In a preferred embodiment, the minimum unstressed volume between the first and second walls is at least 0.18 cubic centimeters per square inch of surface area of each of the first wall and the second wall.
In another preferred embodiment, the first wall and the second wall each comprise a plurality of layers, a first layer of which comprises a heat sealable polymer material and a second layer of which comprises a polymer material having a relative strength greater than that of the first layer.
In one such preferred embodiment, the first layer comprises a linear low density polyethylene and the second layer comprises a high density polyethylene. In another such embodiment, the second layer comprises one of the group selected from nylon, high density polyethylene, polypropylene and polyesters.
In a preferred embodiment, the thickness of each of the first and second walls is less than 10 mils. More preferably, the thickness of each of the first and second walls is less than 8 mils.
In a preferred embodiment, the first wall and the second wall each have a strength defined by a secant modulus of at least 30,000 psi. More preferably, the first wall and the second wall each have a strength defined by a secant modulus of at least 45,000 psi.
In another preferred embodiment, the surface variation defines a height of the inner surface of either of the first wall and the second wall that is between 1.3 and 2.5 times that of the thickness of the respective first wall and second wall.
In another preferred embodiment, the surface variation comprises a repeated pattern of nested alternating elongated ridges defining a plurality of peaks and valleys, wherein adjoining ridges are disposed obliquely relative to each other.
In one such embodiment, the adjoining ridges are disposed perpendicular to each other.
In another preferred embodiment, the abutment of the peaks of the elongated ridges of the first wall with the peaks of the elongated ridges of the second wall define a volume of at least 0.36 cubic centimeters per square inch.
In one such preferred embodiment, each of the elongated ridges has a substantially hemispherical cross-section along at least a portion thereof.
In another such preferred embodiment, each of the elongated ridges has a length of between 0.0625 inches and 0.1825 inches.
Preferably, the surface variation extends substantially along at least 85% of a surface area of each of the first and second walls. In another preferred embodiment, the surface variation extends substantially along the entirety of the first and second walls.
In another preferred embodiment, the first and second walls further comprise a third layer positioned on the second layer opposite the first layer, the third layer comprising a polymer material. In one such embodiment, the third layer comprises a linear low density material of a lower strength than the second layer.
In a preferred embodiment, the collapsible bag further comprises an outer first wall and an outer second wall, the outer first wall being positioned on the first wall and the outer second wall positioned on the second wall generally joined at the seals, so as to define a two-ply collapsible bag.
In another embodiment, the collapsible bag further includes a spout, wherein the spout further comprises an elongated opening and a base flange. The base flange extends about the elongated opening. The flange has a bottom surface wherein the bottom surface includes a plurality of surface channels positioned thereon.
In one such preferred embodiment, the plurality of surface channels comprise radial grooves. In another such preferred embodiment, the plurality of surface channels comprise a combination of a plurality of concentric circular grooves and a plurality of radial grooves.
The invention will now be described with reference to the drawings wherein:
a and 11b of the drawings comprise an embodiment of the collapsible bag of the present invention, showing, in particular, the seals thereof.
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and described herein in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated.
It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings by like reference characters. In addition, it will be understood that the drawings are merely schematic representations of the invention, and some of the components may have been distorted from actual scale for purposes of pictorial clarity.
Referring now to the drawings and in particular to
More specifically, with reference to
It is contemplated that the fluid chamber may comprise any number of different sizes and shapes. One common shape comprises a 2.5 gallon bag of a generally rectangular shape wherein the length of the bag is approximately 21″ and the width of the bag is approximately 17″. Other common configurations comprise a 5 gallon bag having a generally rectangular shape with a length of 24″ and a width of 18.75″. Of course, the invention is not limited to these configurations. Preferably, spout 18 is located proximate one of the top seal and the bottom seal between the opposing side edges of the bag. Of course, other positions of the seal are likewise contemplated.
The invention is generally directed to the evacuation of liquids which are contained within the fluid chamber 56. Any number of liquids are contemplated for use in association with the collapsible bag of the present invention. One of the more difficult classes of liquids to be evacuated from a collapsible bag comprises liquids which are generally viscous such as syrups and pastes. Such liquids are typically more difficult to evacuate due to their mechanical properties, and general resistance to flow.
With reference to
First wall 12 comprises a two layer film, and preferably a three layer film. It will be understood that such a film may be produced in any number of different manufacturing processes without departing from the scope of the invention. One such manufacturing process may comprise a lamination process. Another such manufacturing process may comprise a co-extrusion process. Other manufacturing processes are contemplated and considered within the scope of the invention. In certain embodiments, a single layer film is contemplated for use.
One embodiment of the three layer film is shown in
Second layer 32 comprises a material which is typically more rigid (i.e., stronger) than the first layer. The second layer increases the ability of the overall first wall to retain the surface variations in both an unstressed condition, and in a stressed orientation as liquid is withdrawn from the fluid chamber through suction. In the preferred embodiment the second layer comprises an HDPE which is capable of substantially plastic deformation while retaining its integrity. The thickness of the second layer is generally less than that of the first layer in the contemplated embodiment. In the present invention, the thickness of the second layer is approximately 1.2 mils, and the material has a density of approximately 0.960 grams per cubic centimeter. Of course, materials having greater or a lesser thickness are contemplated for use. Additionally, densities between approximately 0.945 and 0.970 grams per cubic centimeter are contemplated for such a layer.
Third layer 34 comprises a material which typically exhibits improved characteristics relative to heat sealing and/or stress cracks relative to the second material. The third layer preferably comprises a LLDPE material. The material has a thickness of approximately 1.5 mils in the present embodiment, and has a density of approximately 0.930 grams per cubic centimeter in the present embodiment. Of course, materials having a greater or a lesser thickness are contemplated for use. Additionally, densities between approximately 0.910 and 0.930 grams per cubic centimeter are contemplated for such a layer.
In certain embodiments, the third layer may be omitted, leaving only the first layer and the second layer. In other embodiments, additional layers may be employed, such as, for example, an oxygen barrier layer, an outer layer having advantageous mechanical properties (such as wear characteristics, abrasion characteristics, creasing characteristics, etc.). In still other embodiments, such as the embodiment shown in
Second wall 14 is shown in
Surface variation 16 is shown in
A cross-sectional view of the surface variation is shown in
With reference to
Such a surface variation as described provides a plurality of pathways in various directions. Moreover, the surface variations are such that they can cooperate with each other so that intimate contact between the inner surfaces of the first wall and second wall is precluded proximate the surface variation. Specifically, when the first wall and the second wall are positioned in an abutting configuration, voids representing areas where contact between the two walls is not achieved, due to the configuration of the surface variation, collectively define an unstressed volume 58 shown in
With reference to
Of course, other surface variations are contemplated for use, wherein the patterns of the opposing walls are such that a minimum unstressed volume can be maintained, and wherein the minimum unstressed volume defines a path through the bag cavity toward, and, to the spout. Such a configuration may include members having a substantially different shape than the elongated members, and it will be understood that the invention is not limited to the elongated members 60.
In addition to the unstressed volume, the material from which the first wall and the second wall is formed must be of adequate strength, surface configuration (i.e., depth, height, etc.) and/or thickness so that upon evacuation of the collapsible bag through suction preserves at least a portion of the minimum unstressed volume. The coordination of same provides serves to maintain a portion of the minimum unstressed volume upon evacuation by way of suction.
Spout 18 is shown in
Base flange 80 includes top surface 86 and bottom surface 88. Top surface 80 includes sealing region 90. The sealing region comprises the region wherein the film is sealed to the flange. Bottom surface 88 includes channels positioned on spout 18. The channels may comprise any number of different shapes and configurations, many of which are shown in the co-pending priority application to which the present application is a continuation-in-part. The configuration of the spout shown in the priority applications has been incorporated by reference herein.
The wall member 82 extends from the top surface of the base flange. The wall member includes an internal surface 94 and an external surface 96. The external surface may include additional flanges which facilitate the grasping and retaining thereof by filling and packaging equipment. The internal surface defines an elongated opening. Of course, a number of different sizes, shapes and configurations are contemplated for use in the spout, and the invention is not limited to a substantially circular spout having a particular length.
In operation, the collapsible container is generally filled by filling equipment to a desired weight or volume. Once filled, the collapsible bag is generally boxed for shipment and dispensing. The collapsible bag may be transported varying distances prior to evacuation. Once the destination is reached, a withdrawing device is attached to the container. The withdrawing device generally operates through suction to remove the liquid within the fluid chamber.
The box having the collapsible bag may be positioned in any number of different containers. For example, the collapsible bag can be predominantly lying on the first wall or the second wall, wherein the spout may be in a downward or upward direction. Moreover, the container may be canted toward the spout. In other configurations, the collapsible bag may be resting predominantly on its side edges wherein the spout may be elevated. Finally, the collapsible bag may be positioned on the back seal such that the spout is positioned near the top of the container (
In the present invention, the surface variations insure that in a unstressed position, a minimum volume is maintained between the first wall and the second wall (
Certain testing was carried out relative to an embodiment of present invention and a container available commercially. The embodiment of the container of the present application comprised a 2.5 gallon container (21″ by 17″ rectangular pillow type container) having surface variations extending about the entirety of the first and second walls thereof. The first wall and the second wall comprise a three layer film, wherein the first layer is a LLDPE having a thickness of approximately 3 mils; the second layer comprises a HDPE having a thickness of approximately 1.2 mils; and the third layer comprises a LLDPE material having a thickness of approximately 1.5 mils, such that the film comprises a thickness of approximately 5.7 mils. The surface variations have a height of approximately 12 mils and comprise an alternating set of nested elongated members (
A conventional spout was attached to the container (i.e., a spout having a substantially uniformly flat bottom surface of the base flange). The formed container was filled a conventional post mix syrup having a specific gravity of approximately 1.25. The weight of the filled container was measured and recorded. The container was then placed in an evacuation test in a vertical orientation wherein the spout of the container is positioned proximate the top in a substantially uppermost orientation, as is shown in
The same procedure was undertaken with respect to a commercially available container having relatively shallow pathways pressed into the inner surface thereof, having an approximate depth of about 0.0018 inches. Such a container includes a plurality of pathways pressed into the inner surfaces of each of the first and second walls. The pathways are in a waffle pattern so as to define a plurality of square protuberances.
The comparative results are identified in the chart below. In particular, the chart identifies the competitive bag, and the relative quantity of syrup remaining in the bag after the fifteen minute period of the test. The initial weight of the syrup was approximately 25 pounds. The final weight of the syrup after the fifteen minute test is tabulated below.
As can be seen from the data, the container of the present invention consistently removed a substantially greater amount of fluid from within the container. In particular, while substantially all of the syrup was removed from the container made in accordance with the present invention, the flow was essentially choked off during evacuation of the comparative container. In many instances several pounds of the syrup remained in the comparative container after the fifteen minute time limit expired. The container produced in accordance with the present invention substantially consistently removed a vast majority of the syrup from within the container.
The foregoing description merely explains and illustrates the invention and the invention is not limited thereto except insofar as the appended claims are so limited, as those skilled in the art who have the disclosure before them will be able to make modifications without departing from the scope of the invention.
This application is related to co-pending U.S. patent application Ser. No. 11/048,622 entitled COLLAPSIBLE BAG FOR DISPENSING LIQUIDS AND METHOD filed Feb. 1, 2005, which is a continuation of U.S. Pat. No. 6,851,579 B2 entitled COLLAPSIBLE BAG FOR DISPENSING LIQUIDS AND METHOD which is a continuation of U.S. Pat. No. 6,607,097 B2 entitled COLLAPSIBLE BAG FOR DISPENSING LIQUIDS AND METHOD which is a continuation of U.S. patent application Ser. No. 09/709,144 entitled COLLAPSIBLE BAG FOR DISPENSING LIQUIDS AND METHOD filed Nov. 10, 2000, now abandoned, which is a continuation of U.S. Provisional Patent Application Ser. No. 60/164,699 entitled COLLAPSIBLE BAG FOR DISPENSING LIQUIDS, filed Nov. 10, 1999, the entire specification of each of the foregoing application is hereby incorporated by reference in their entirety.