1. Technical Field
The present disclosure is related to plastic bottles, and more particularly, to plastic bottles that are configured to collapse into a tile structure, caps thereof and related systems, components and methods, including building components or other structures made from a collapsible shell that is designed to fold or collapse in a consistent manner to a final predefined configuration that has a distinct use or purpose apart from the collapsible shell in an expanded configuration.
2. Description of the Related Art
Environment friendly building systems utilizing recycled/upcycled, collapsed, preformed and post consumer plastic bottles are known and disclosed in U.S. Pat. No. 8,245,475, which is incorporated herein by reference in its entirety.
Embodiments described herein include collapsible bottles that are configured to collapse into predefined tile units. In this manner, waste bottles may be collected and repurposed and effectively taken out of the waste stream (“out cycled”) by putting the materials to permanent or more permanent uses, such as, for example, as roof or siding structures. Other related systems, components and methods are also provided.
For example, according to one embodiment, a collapsible bottle that is movable between an expanded configuration and a collapsed configuration may be summarized as including a neck and a main body extending between an upper end adjacent the neck and a lower end opposite the neck, the main body defining a fluid cavity to store fluid when the collapsible bottle is in the expanded configuration, and the main body including a primary indentation proximate the lower end of the main body to assist in collapsing the bottle in a predetermined manner. A portion of the lower end of the main body may move in a direction toward the neck as the main body bends, folds and/or collapses in a region of the primary indentation when the collapsible bottle transitions from the expanded configuration to the collapsed configuration.
The main body may include a front sidewall having a transverse groove that extends across the front sidewall to assist in collapsing the bottle in the predetermined manner. The main body may include a front sidewall having an arcuate groove between the upper end and the lower end of the main body that extends transversely across the front sidewall and assists in collapsing the bottle in the predetermined manner. The main body may include a front sidewall having a coupling cavity proximate the lower end of the main body for coupling to adjacent collapsed bottles or a foundation when the bottle is in the collapsed configuration. When provided, the coupling cavity may be sized and shaped to receive a distal end of a hook structure for securing the lower end of the bottle to a foundation. The main body may include a rear sidewall opposite the front sidewall, which includes a transverse ridge that extends completely across the rear sidewall. The main body may have a generally rectangular cross-sectional profile. When viewing the main body in a direction normal to the front sidewall, a central portion of the main body between the upper end and the lower end may bulge outwardly. The main body may include a front sidewall and a rear sidewall, and wherein the bottle may be configured to form one of a series of overlapping tiles when in the collapsed configuration, the front sidewall forming a lower tile surface and the rear sidewall forming an upper tile surface.
The main body may include lower corner regions that may be configured to be depressed inwardly to assist in transitioning the bottle from the expanded configuration to the collapsed configuration. The lower end of the main body may form a catch structure when the bottle is in the collapsed configuration, and wherein the inwardly depressed corner regions may assist in locking the catch structure in a rigid position. The main body may include opposing lateral sidewalls, and wherein an interface between each of the lower corner regions and a respective one of the opposing side sidewalls may form an arcuate boundary. A bottom of the main body may include a pocket and relief features, the relief features configured to assist in enabling rotation of the pocket toward the neck when the bottle transitions from the expanded configuration to the collapsed configuration. The main body may include a generally rectangular cross-sectional profile over a majority of a height thereof and wherein the bottle tapers from the lower end toward the upper end. The front sidewall may include a concave indentation adjacent to the primary indentation to provide clearance for a coupling device used to secure the bottle to adjacent bottles when the bottle is in the collapsed configuration. The front sidewall and an opposing rear sidewall may each include a convex portion in the expanded configuration proximate the upper end of the main body.
According to another embodiment, a tile system may be summarized as including a plurality of bottles in a collapsed configuration and an elongated mounting structure for securing at least some of the plurality of bottles to a foundation. At least one of the plurality of bottles may be provided with a cap that is configured to attach to the elongated mounting structure. The cap may include a base member and a closable lid member securable to the base member with the elongated mounting structure received therebetween. The elongated mounting structure may be a flexible strap. The elongated mounting structure may be a rigid support structure having an array of longitudinally spaced apertures, each of the apertures having a profile to receive a neck portion of a respective one of the plurality of bottles. The elongated mounting structure may be a channel member having a cross-sectional profile configured to insertably receive a portion of a respective one of the plurality of bottles. The cross-sectional profile of the channel member may be generally c-shaped and may include at least one catch, hook or barb to assist in retaining a neck portion of each bottle within a cavity of the channel member. The channel member may be resilient and flexible to allow a neck portion of each bottle to be inserted into a cavity of the channel member with a snap fit. The elongated mounting structure may include a plurality of hook structures spaced along a longitudinal length thereof. Each of the plurality of hook structures may be an integral portion of the channel member. Each of the plurality of hook structures may be bent from a surface of the channel member. A distal end portion of each of the plurality of hook structures may include a profile that is correspondingly shaped to a coupling cavity in a respective bottle that is engaged by the hook structure. The plurality of hook structures may be removably coupled to the channel member.
The tile system may include a plurality of elongated mounting structures, with each of the elongated mounting structures including a channel member having a cross-sectional profile configured to insertably receive a portion of each bottle from a first respective grouping of the plurality of bottles and including a plurality of hook structures to engage a lower end of each bottle from a second respective grouping of the plurality of bottles. The plurality of elongated mounting structures may include a first elongated mounting structure in which the channel member is engaged with a neck portion of each of a first linear arrangement of the bottles, a second elongated mounting structure in which the hook structures thereof are engaged with a base portion of each of the first linear arrangement of the bottles, and a third elongated mounting structure positioned between the first and second elongated mounting structures to underlie a mid-region of each of the first linear arrangement of the bottles. Each of a linear arrangement of the bottles may be supported by a series of the elongated mounting structures at a neck portion, a base portion and an intermediate portion between the neck portion and the base portion. The bottles may be attached to the foundation without nails or screws. At least one of the plurality of bottles may be provided with a cap having a predefined cavity to receive and orient a mechanical fastener for attaching the at least one bottle to the foundation. The foundation may be a roof or a wall.
According to another embodiment, a method of collapsing a bottle to form a tile may be summarized as including depressing corner regions of the bottle inwardly and rotating a portion of the bottom of the bottle forward toward a neck portion of the bottle to form a catch structure. Depressing the corner regions of the bottle inwardly may include depressing the corner regions to include concave depressions. Rotating the portion of the bottom of the bottle forward toward the neck portion may include collapsing a front sidewall at a primary indentation formed therein proximate a lower end of the bottle. Rotating the portion of the bottom of the bottle forward toward the neck portion may include bending the bottom of the bottle at relief features formed therein. The method may further include urging a lower portion of a front sidewall of the bottle delineated by an arcuate groove formed therein to shift toward the neck portion. The method may further include depressing one or more of convex portions of the bottle located on opposing sides of an upper end thereof to become concave. The method may further include collapsing opposing lateral sidewalls of the bottle inwardly. The method may further include scoring a perimeter portion of the corner regions of the bottle prior to depressing the corner regions of the bottle inwardly.
According to another embodiment, a method of forming a tiled structure may be summarized as including collapsing a plurality of bottles and securing the plurality of bottles to a foundation with an elongated mounting structure. Securing the plurality of bottles to the foundation with the elongated mounting structure may include snapping a neck portion of each bottle into a respective aperture formed in the elongated mounting structure. Securing the plurality of bottles to the foundation with the elongated mounting structure may include enclosing a strap within respective cap of each bottle. Securing the plurality of bottles to the foundation with the elongated mounting structure may include inserting a portion of each bottle into a channel of the elongated mounting structure. Securing the plurality of bottles to the foundation with the elongated mounting structure may include engaging a lower end of each bottle with a respective hook structure of the elongated mounting structure. Securing the plurality of bottles to the foundation with the elongated mounting structure may include inserting a portion of each bottle from a first linear arrangement of the bottles into a channel of the elongated mounting structure and engaging a lower end of each bottle from a second linear arrangement of the bottles with a respective hook of the elongated mounting structure.
According to another embodiment, a bottle cap may be summarized as including a base member having internal threads for engaging a bottle and including a storage cavity to store an item with the bottle, an elongated arm member extending outward from the base member, and a lid member hingedly coupled to the base member to move between a closed configuration in which the lid member overlies the base member and an opened configuration in which the storage cavity is uncovered. The bottle cap may consist of two pieces, the base member defining one piece and the lid member and the elongated arm collectively defining the other piece. The base member may be formed of a first material and the lid member and the elongated arm may be formed of a second material that is different than the first material. The lid member and the elongated arm may be removably attachable to the base member. The base member, the lid member and the elongated arm may be injection molded portions of a single, integrally formed bottle cap. The storage cavity may be sized and shaped to receive and orient a mechanical fastener for attaching the bottle cap to a foundation. The bottle cap may further include an item positioned in the storage cavity; and a seal to sealingly enclose the item in the storage cavity. The item may be a seed, a vitamin or a supplement.
According to another embodiment, a tile system may be summarized as including a plurality of bottles in a collapsed configuration at least partially filled with a cellulose based cement mixture. The cellulose based cement mixture may include material from a package for shipping and storing a collection of the bottles.
According to another embodiment, a method of forming a tiled structure may be summarized include collapsing a plurality of bottles, at least partially filling the plurality of bottles with a cellulose based cement mixture, and securing the plurality of bottles to a foundation in a tiled arrangement.
According to another embodiment, a carbon containment system may be summarized as including an impermeable vessel filled with a cellulose based cement mixture. The impermeable vessel may be a collapsed plastic bottle in the form of a tile or other building component.
According to another embodiment, a carbon containment system may be summarized as including a structure formed of a cellulose based cement mixture comprising post-consumer waste and a barrier that covers, encloses or encapsulates the structure formed of the cellulose based cement mixture.
According to another embodiment, a building component made by a process may be summarized as including obtaining a thin shell vessel that includes at least one indentation or groove positioned to assist in reconfiguring the thin shell vessel from an expanded configuration into a predefined collapsed configuration; and reconfiguring the thin shell vessel from the expanded configuration to the predefined collapsed configuration with the aid of the at least one indentation or groove to make the building component. Reconfiguring the thin shell vessel may include implementing surface area manipulation techniques to transform the thin shell vessel into the predefined collapsed configuration to make the building component, the building component having generally the same surface area as the thin shell vessel but a reduced volume and a modified shape. In some instances, the thin shell vessel may be a molded bottle and the building component may be a tile unit. The molded bottle may include a neck and a main body extending between an upper end adjacent the neck and a lower end opposite the neck, the main body defining a fluid cavity to store fluid when the molded bottle is in the expanded configuration. The main body may include the at least one indention or groove proximate the lower end of the main body to assist in collapsing the molded bottle in a predetermined manner. A portion of the lower end of the main body may move in a direction toward the neck as the main body bends, folds and/or collapses in a region of at least one indention or groove when the molded bottle transitions from the expanded configuration to the collapsed configuration.
According to yet another embodiment, a method may be summarized as obtaining a plurality of thin shell vessels that each include at least one indentation or groove positioned to assist in reconfiguring the thin shell vessel from an expanded configuration into a predefined collapsed configuration; and reconfiguring each of the plurality of thin shell vessels from the expanded configuration to the predefined collapsed configuration with the aid of the at least one indentation or groove to form building components. The thin shell vessels may be molded bottles and the building components may be tiles. The method may further include arranging the tiles together to form a tiled building structure. The method may further include securing the tiles together to form a collective array of tiles. The method may further include filling at least some of the tiles with a cellulose based cement mixture.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one of ordinary skill in the relevant art will recognize that embodiments may be practiced without one or more of these specific details. In other instances, well-known structures associated with plastic bottles, bottle caps and roofing or siding systems, may not be shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
According to the example embodiment of
The front and rear sidewalls 24, 26 of the collapsible bottle 12 include a respective convex portion 40, 42 in the expanded configuration E proximate the upper end 18 of the main body 16 that may be depressed when transitioning into the collapsed configuration C. The convex portions 40, 42 may assist in routing rain water in a desired manner. The convex portions 40, 42 may have a circular, oval, ovoid, rectangular, square or other regularly or irregularly shaped perimeter. In some instances, one or more of the convex portions 40 may remain convex when the bottle 12 is in the collapsed configuration C, as shown in
The front sidewall 24 further includes a primary indentation 46 proximate the lower end 20 of the main body 16 to assist in collapsing the bottle 12 in a predetermined manner. The primary indentation 46 preferably includes an inwardly directed crease or pleat that assists in forming a brake line 47 (
The front sidewall 24 further includes an arcuate groove 54 between the upper end 18 and the lower end 20 of the main body 16 that extends transversely across the front sidewall 24 and assists in collapsing the bottle 12 in the predetermined manner. The arcuate groove 54 may allow a lower region of the bottle 12 to shift upwardly toward the neck 14 as the select portion 48 of the lower end 20 of the main body 16 is rotated or otherwise moved in a direction toward the neck 14 during the collapsing process.
The front sidewall 24 further includes a coupling cavity 56 proximate the lower end 20 of the main body 16 for coupling to an adjacent collapsed bottle 12, building structure or fastener thereof when the bottle 12 is in the collapsed configuration. For instance, the coupling cavity 56 may be sized and shaped to receive a portion of a coupling structure associated with another like bottle 12 to securely couple the bottles together when assembling a tiled building structure. In other instances, the coupling cavity 56 may be sized and shaped to receive a portion of a fastener, such as, for example, a hook structure, which may be used to secure the bottle to a roof or other building structure. The coupling cavity 56 may be centrally located in the lateral direction and may form a concave pocket below the primary indentation 46. In the collapsed configuration, an opening to the coupling cavity 56 may face toward the rear sidewall 26.
The front sidewall 24 further includes a transverse groove 58 that extends across the front sidewall 24 to assist in collapsing the bottle 12 in the predetermined manner. In particular, the transverse groove 58 may assist in allowing the front sidewall 24 to bend, fold and/or collapse about the transverse groove 58 as the bottle 12 is collapsed. The transverse groove 58 may have a relatively shallow depth which is less than or equal to three times a material thickness of the front sidewall 24 and may extend substantially linearly.
The front sidewall 24 may further include a concave indentation 60 adjacent to and above the primary indentation 46 to provide clearance for a coupling device (e.g., elongated arm 100 of a bottle cap 80 of
The rear sidewall 26 may include a transverse ridge 62 that extends completely across the rear sidewall 26. The ridge 62 may provide reinforcement to provide increased local resistance to bending to assist in ensuring the bottle 12 is collapsed in the predetermined manner. The ridge 62 may be relatively short, having a height less than or equal to three times a material thickness of the rear sidewall 26, and may extend substantially linearly.
The main body 16 may further include lower corner regions 66 that are configured to be depressed inwardly to assist in transitioning the bottle 12 from the expanded configuration E to the collapsed configuration C. When the bottle 12 is in the collapsed configuration C, the inwardly depressed corner regions 66 may assist in locking the catch structure 13 in a particularly rigid position. An interface between each of the lower corner regions 66 and a respective one of the opposing lateral sidewalls 28, 30 may form an arcuate boundary 68, as shown best in
As shown best in
The aforementioned features may collectively provide a bottle 12 that is particularly well suited to form one of a series of overlapping tiles 12′ when in the collapsed configuration C (
With reference to
The method may further include collapsing the lateral sidewalls 28, 30 inwardly and creasing the bottle 12 laterally in a region immediately below the previously convex portions 40, 42.
The method may further include depressing the corner regions 66 of the bottle 12 inwardly and rotating the select portion 48 of the bottom 32 toward a neck portion 14 of the bottle 12 to form a catch structure 13. Depressing the corner regions 66 of the bottle 12 inwardly may include depressing the corner regions 66 to include concave depressions and rotating the select portion 48 of the bottom 32 of the bottle 12 toward the neck portion 14 may include collapsing the front sidewall 24 at the primary indentation 46 formed therein. Rotating the select portion 48 of the bottle 12 toward the neck portion 14 may further include bending the bottom 32 of the bottle 12 about brake line 74 defined by the relief features 72 formed therein. In some instances, the method may further include scoring a perimeter portion of the corner regions 66 prior to depressing the corner regions 66 of the bottle 12 inwardly. Scoring may be of particular assistance in collapsing the bottler 12 when the bottle 12 or the lower end 20 thereof is relatively thick or formed of a particularly rigid material.
The method may further include urging a lower portion of a front sidewall 24 of the bottle 12 delineated by the arcuate groove 54 formed therein to shift toward the neck portion 14. In doing so, a surface of the arcuate groove 54 may rotate or pivot to form a shelf or shelf-like feature in the resulting tile structure 12′.
The aspects of the methods of collapsing a bottle 12 described above may occur simultaneously or sequentially in any order. Moreover the methods may be conducted manually or automatically with the aid of a machine. Tools or a jig or fixture may be provided to assist a user in collapsing the bottles 12 in a repeatable manner to create tiles 12′ of consistent form. The resulting tiles 12′ may have a form that is the same or similar to the collapsed bottle structure shown in
As discussed earlier, when in the expanded configuration E, the collapsible bottles 12 described herein define an internal fluid cavity 22 to store fluid. Each bottle 12 may have a generally rectangular cross-sectional profile that extends over a majority of a height thereof to provide a prismatic shape that is generally rectangular in form. The bottle 12 may be slender, elongated and taper from the lower end 20 toward the upper end 18. The bottle 12 may also include lateral sidewalls 2830 that exhibit some degree of concavity. In this manner, particularly ergonomic bottles 12 are provided that can be comfortably grasped. Views of a few select ways of grasping the example bottle 12 are shown in
The bottles 12 may include a form factor that is particularly well suited for arranging or packing a collection of the bottles 12 in a compact, space saving manner. For example, the form factor of the bottle 12 shown in
The bottle cap 80 also includes an elongated arm 100 extending outward from the base member 82. The elongated arm 100 may form a hook or similar structure that is configured to engage a catch portion of a respective tile 12′ when the bottle 12 to which the cap 80 is attached is collapsed and arranged with like tiles 12′ to form a tiled building structure, such as, for example, the tiled roof shown in
According to the illustrated embodiment of
In addition to being configured to receive a select item 92 (e.g., a capsule, pill or seed), the storage cavity 90 of the base member 82 may also be configured to receive and orient a mechanical fastener for attaching the bottle cap 80 to a foundation.
In some embodiments, the bottle cap 80 may also include a tamper evident feature (not shown) that is fracturable to gain access to the contents of the bottle 12. In some embodiments, the tamper evident feature may be fracturable via transverse motion of the lid member 84. A thumb stud or grip may be provided on the lid member 84 to assist in sliding the lid member 84 and fracturing the taper evident feature.
As shown in
In other embodiments, and with reference to
The elongated mounting structure 152″ may also include a plurality of hook structures 156 spaced along a longitudinal length thereof. The hook structures 156 may be an integral portion of the elongated mounting structure 152″. For example, with reference to
In some embodiments, a mounting system may include hook structures 176 that are removably coupled to an elongated mounting structure or channel member 152′″, as shown, for example in
Although specific mounting arrangements have been disclosed, it is appreciated that there are many different ways to secure the collapsed bottles 12′ described herein to form a generally continuous array of collapsed bottles 12′ to create a tiled building structure such as a roof or a wall. In addition, it is appreciated that various roofing and siding components, such as, for example, a ridge cap or a vent, may be adapted for use in connection with the systems and methods described herein. In addition, moisture barriers and other roofing and siding devices and materials may be used in combination with the collapsed bottles 12′ to form complete roofing and siding solutions.
As discussed above, according to some embodiments, the collapsed bottle tiles 12′ described herein may be at least partially filled with a fill material. In some instances, the fill material may comprise shredded or pulverized waste mixed with a polymeric material, grout, lightweight concrete or other material. The fill material may be selected to provide a desired level of insulation or to have other selected properties. Advantageously, using a fill material of shredded or pulverized waste containing cellulose mixed with a polymeric matrix, grout, lightweight concrete or other material will provide environmental benefits in addition to those already associated with reuse of the host plastic bottles 12. The fill material may be sealed within the bottle tiles 12′ by ultrasonic welding or other sealing techniques. In some embodiments, the bottle tiles 12′ may be partially filled and sealed at an intermediate location between opposing ends of the bottle, such as, for example, seal locations 57 shown in
In one embodiment, the collapsed bottle tiles 12′ may be filled with a mixture prepared from ingredients in which a large proportion, majority or super-majority of the ingredients by weight or volume are obtained from used disposable paper coffee cups and other waste materials associated therewith (e.g., a paper napkin, an insulator sleeve, and/or used coffee grounds). The mixture may further include a supplemental base material or a binder, such as, for example, grout or concrete, and one or more additives, such as, for example, a plasticizer. Ingredients may be obtained from one or more “servings” of waste associated with consuming a cup of coffee, which may comprise material from one paper coffee cup (including plastic coating or liner thereof), one paper napkin, one paperboard insulator sleeve and a volume of used coffee grounds, along with grout material and a plasticizer. The waste material (e.g., paper coffee cup, paper napkin, paperboard insulator sleeve) may be shredded, pulverized or otherwise processed prior to or during mixture with other ingredients.
In some embodiments, the cup may be shredded such that a plastic coating or liner thereof is reduced into strip form. The strips of plastic material may be removed from the mixture or bound therein to create a strip-reinforced matrix. The amount of coffee ground, when provided, may be adjusted to vary the natural coloring of the resulting mixture. The mixture may be introduced manually or automatically into the collapsed bottles 12′ to form durable, lightweight tile structures. In the filled configuration, the plastic shell or envelope of the collapsed bottles 12′ may act as a transparent glazing surrounding the fill material. The collapsed bottle 12′ may be sealed with the fill material located therein.
Advantageously, the resulting filled roofing tiles described immediately above may effectively provide a zero waste alternative to both the plastic bottle 12 as well as the disposable paper coffee cup while providing solutions for carbon containment, reduced energy consumption and greenhouse gases.
In other embodiments, the collapsed bottle tiles 12′ may be filled with a mixture prepared from ingredients in which a large proportion, majority or super-majority of the ingredients by weight or volume are obtained from cellulose-based packaging that is used to transport or store a collection of the bottles 12 (e.g., packaging for a six-pack or twelve pack of the bottles 12). The mixture may further include a supplemental base material or a binder, such as, for example, grout or concrete, and one or more additives, such as, for example, a plasticizer. Ingredients may be obtained from one or more packages. The package(s) may be shredded, pulverized or otherwise processed prior to or during mixture with other ingredients. In some embodiments, a single package may be used as the sole source of cellulose-based material for the filler for the bottles 12 that were previously transported or stored therein, thereby providing a zero-waste alternative for the bottles and the packaging associated therewith.
A benefit of placing a cellulose based mixture in an air tight or hermetically sealed plastic bottle is that its high organic carbon content will not readily decompose into CO2 and therefore the bottle may function as an effective carbon storage or containment vessel helping to reduce the production of greenhouse gases. Thus, the plastic bottle re-configured and filled with a cellulose based cement mix or similar mixture may act as a very significant carbon storage unit when multiple units are used in residential and commercial construction as roofing tiles. There are also other CO2 related advantages of using lightweight material to fill the collapsed plastic bottles with insulating material. Insulation helps reduce energy consumption of the building to which the tiles are attached, effectively lowering the buildings carbon footprint. Additionally, the reflective surfaces of the plastic collapsed bottles reflect radiated heat thereby lowering cooling costs. These and other advantages may be provided by the various collapsible bottles, bottle caps and related systems and methods described herein.
Although embodiments described above are directed predominately to bottle structures, it is appreciated that in other embodiments a carbon containment system may be provided which includes an impermeable vessel (e.g., a plastic container) in a variety of forms and configurations which is filled with a cellulous based cement mixture or similar fill mixture. The impermeable vessel is not limited to bottle structures, but may include a wide variety of building materials (e.g., beams, blocks, flooring) or other functional or aesthetic structures. Advantageously, the cellulous based cement mixture or similar mixture may be sealed within the impermeable vessel such that carbon is effectively trapped or contained in a hermetically sealed environment. In other embodiments, a carbon containment system may include a structure (e.g., a countertop, furniture) formed of a cellulose based cement mixture comprising post-consumer waste and a barrier that covers, encloses or encapsulates the structure. The barrier may be a coating, a laminate or other device applied to a surface or surfaces of the structure. Advantageously, cellulose consumer waste can be pulled out of the waste stream and converted to useful goods that effectively store or contain carbon based matter.
According to another embodiment, a method or process involving surface area manipulation (“SAM”) is provided which entails a technique of pre-engineered reconfiguration or folding to modify the starting shape and volume of thin shell vessels or receptacles into finished secondary shapes, which would otherwise be impractical or impossible to mold in the first instance using current molding technology such as blow molding. This second phase manipulation of the product's shape and volume can be achieved either manually or in an automated or semi-automated reconfiguration process (e.g., via the aid of a machine).
The plastic molding industry is well established and efficient when it comes to mass producing expanded vessels and receptacles, such as, for example, bottles. Blow molding of PET plastic is one example of an efficient molding process for such vessels. Blow molding uses plastic preforms which are preheated to soften the material which is then stretched and blown into cavity molds to produce hollow, thin shell vessels or receptacles. As a result of the blow molding process, there are limitations to the dimensional shape of the vessel that is being blown because the process and the mold must be designed so that the expanding plastic preform reaches the walls of the mold before hardening. The length of a product is determined by, and in relation to, the length of the normally cylindrical preform but there are definite limitations based on a product's width to depth relationship, known as its aspect ratio. As a result, products with a very thin or narrow profile (i.e., width excessively dominating over depth) are difficult if not impossible to mold. Furthermore, products having overlapping sections or under folds are also extremely difficult to mold and evacuate from the mold cavity. Therefore, for these reasons, molded thin shell vessels or receptacles generally have a low aspect ratio, are typically symmetrical, and have no under folding or negative reveals. These design limitations are of little concern in the beverage Industry, for example, as typically an expanded, symmetrical bottle with no under folding is the eventual design goal. The resulting thin shell vessels or receptacles typically provide a sealable closure which provides an impermeable and secure barrier between the interior environment of the vessel or receptacle and the external environment thereto. If the vessels or receptacles are sealed and left empty, other than air, an extremely durable and very light weight bubble structure results creating an effective dead air space with insulating properties. Therefore, as an example, the inherent properties of a blow molded vessel or receptacle may have industrial applications beyond the container industry if their area, volume, and aspect ratio could be modified in a predesigned secondary reconfiguration process, an innovative process referenced herein as surface area manipulation or “SAM” for short.
As an example, double pane glass windows are essentially entrained air or gas containers that have a very high aspect ratio. Therefore, a typical cavity or double pane window made of plastic could not be blow molded for the reasons discussed above. The double pane design provides sealed dead air space between thin shell glass outer walls which increases the product's insulation or R-value as heat is not well conducted through a dead air space. Windows and glass in general provide the benefits of transparency and or translucency, impermeability, and general building envelope closure. Typically glass is fragile and limited in its overall insulating qualities. As a result, in areas having drastic temperature differences between the exterior and interior environments, triple pane windows are often used to take advantage of multiple layering of dead air spaces. Traditional windows, however, may cover large spaces, are generally an expensive material, and lose all effectiveness if cracked. Therefore, for certain construction related applications, the creation of a multilayered sheathing consisting of a redundancy of interconnected molded plastic vessels with a high width to depth ratio and encapsulating a dead air space provides various advantages.
An advantageous building component to replace glass and other construction materials and sheathing, whether intended for use in walls, floors, ceiling, roofs or other structures, could be for example the patterned interconnection of carefully designed capsules that effectively isolate interior and exterior environments. This proposed interconnection and multi-layering of a redundancy of durable double pane, securely sealed vessels, having a high aspect ratio and thin profile provides an advantageous sheathing material. Furthermore, intentionally using a blow molded base component pre-engineered to have its initial surface area reconfigured into a thin, technologically advantageous double pane-like construction element is innovative and provides an example of product design using second phase surface area manipulation or “SAM.”
The implications of product design employing “surface area manipulation” go beyond industrial applications and can be translated into unique and novel environmental and economic applications. According to one example of an improved building envelope material developed using surface area manipulation techniques, the first process (e.g., a blow molding process) may be used to produce expanded food containers which are predesigned to transition to or be reconfigured into, as a second phase, a thin shell building module (e.g., a tile, a paver, a flooring element). This may also provide opportunity for a related “waste discount strategy” which may be defined as the sale of transitory consumer products with the financial design intention to repurchase them as a prime finished material resource for a secondary product at waste prices. This transitory use of the consumer product (e.g., water bottle, food container) radically lowers the cost for its reconfigured use in its second phase as an advanced construction material (e.g., tile, paver, flooring element). From an environmental perspective, the plastic vessel or receptacle is subsequently converted to a high quality building material with an extended useful life expectancy that effectively removes the plastic from the waste stream and puts it to permanent or relatively more permanent use as an advantageous building component, for example. This form of reutilization or “out cycling” may be defined as the transitory use of consumer products with the design intention of reconfiguring them in an altered pre-defined form to secondary products of potentially greater economic, social, or environmental value that put the product's material to permanent or relatively more permanent use.
Although embodiments described herein are directed in large part to bottles that are reconfigurable into predefined tiles for roofing structures, it is appreciated that surface area manipulation or “SAM” techniques may be applied to a wide range of expanded vessels or receptacles that are reconfigurable into predefined building materials or other useful structures. These building materials or other structures may comprise generally the same surface area and mass as the original expanded vessel or receptacle from which they are formed but with a significantly reduced final volume. In many instances, the expanded shell vessels or containers will be collapsed or folded into leaner, denser and more robust or rigid end products.
In addition, although example embodiments of the bottles described herein are shown and described as having a main body with a generally rectangular cross-sectional profile over a majority of a height thereof, it is appreciated that the bottles may include a wide variety of shapes and sizes, including, for example, generally cylindrical bottles.
Moreover, aspects of the various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including U.S. Provisional Application Ser. Nos. 61/860,833 and 61/992,768, are incorporated herein by reference in their entirety. Aspects of the embodiments can be modified if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled.
Number | Date | Country | |
---|---|---|---|
61992768 | May 2014 | US | |
61860833 | Jul 2013 | US |