This invention relates to collapsible containers for fluids and, more particularly, to a collapsible bottle having flow channels in a side wall of the bottle.
Collapsible bottles are well known as to contain fluid material with the fluid to be dispensed from an opening of the container with collapsing of the container. For example, hand cleaning fluid dispensers are known incorporating a pump for drawing fluid from a collapsible container and dispensing it onto a user's hand.
A disadvantage of previously known collapsible containers is that the containers sometimes collapse in a manner which traps fluid in the container. For example, the collapsible container may collapse prematurely at a middle portion along the length of the container preventing fluid in the container from flowing through the collapsed intermediate portion to a discharge opening. This disadvantage is particularly acute when the fluid to be dispensed is expensive and under circumstances when the dispensing of fluid is critical to be maintained. This disadvantage generally increases with increases in the viscosity of the material to be dispensed and particularly with fluids including particulate matter such as pumice in a hand cleaning fluid.
To at least partially overcome these disadvantages of previously known devices, the present invention provides a collapsible bottle with a channelway provided in a side wall which, in collapsed conditions of the bottle, the channelway becomes engaged with opposed portions of the side wall and defines a flow passageway therethrough toward a discharge opening at one end of the bottle and a closed other end of the bottle.
The present invention also provides a collapsible bottle including an encircling side wall with a front wall portion and a rear wall portion opposed to the front wall portion in which front and rear wall portions of the side wall are drawn towards each other and into engagement as the bottle is collapsed, and wherein a channelway is provided in the front wall portion defining a flow channel open towards the rear wall portion and, in a collapsed bottle, the rear wall portion engages the front wall portion to bridge the flow channel and define a flow passage therein extending within the bottle toward a discharge opening of the bottle.
In one aspect, the present invention provides a collapsible bottle having a first end and a second end;
the bottle having an enclosed cavity defined between the first end and the second end and an encircling side wall bridging between the first end and the second end, the side wall including a front wall and a rear wall opposed to the front wall,
a discharge opening at the first end,
wherein the bottle is collapsible such that when vacuum conditions are applied to the opening, the bottle collapses with the front wall and the rear wall drawn towards each other and into engagement with each other,
a channelway provided in the front wall,
the channelway defining a flow channel which is open toward the rear wall between the first end and the second end,
wherein during collapse of the bottle when the front wall and the rear wall are drawn into engagement, the rear wall engages the front wall to bridge the flow channel and a flow passageway is defined between the channelway of the front wall and the rear wall permitting fluid flow therethrough between the first end and the second end.
Further aspects and advantages of the present invention will become apparent from the following description taken together with the accompanying drawings in which:
Reference is made to
The container has an opening or discharge outlet 14 at the open end 13. The bottle 10 has a cylindrical neck 15 about the outlet 14 carrying external threads 16. The open end 13 has a top wall 17. The closed end 12 has a bottom wall 18. A side wall 20 bridges between the closed end 12 and the open end 13, that is, between the top wall 17 and the bottom wall 18 with the side wall 20 encircling the bottle 10.
The side wall 20 includes a front wall 21, a rear wall 22 opposed to the front wall 21, a right wall 23 and a left wall 24. Each of the right wall 23 and the left wall 24 bridge between the front wall 21 and the rear wall 22 on the right and left sides thereof, respectively. The right wall 23 comprises a front right portion 25 and a rear right portion 26. The left wall 24 comprises a front left portion 27 and a rear left portion 28.
An enclosed cavity 30 is defined between the bottom wall 18 of the closed end 12 and the top wall 17 of the open end 13 inside the side wall 20 open via the outlet 14 at the open end 13.
The front wall 21 comprises three portions, namely, a right face portion 32, an intermediate step portion 33 and a left face portion 34. The rear wall 22 is disposed substantially in a flat plane parallel the axis 11. The right face portion 32 is disposed in a plane parallel to the rear wall 22 and extends from the right wall 23 to the step portion 33. The step portion 33 is disposed in a plane perpendicular to the rear wall 22 and the right face portion 32 with the step portion 33 extending rearwardly towards the rear wall 22 from the right face portion 32 to the left face portion 34. The left face portion 34 extends from an inner edge of the step portion 33 to the left wall 24. Each of the rear wall 22, the front right portion 25, the rear right portion 26, the front left portion 27, the rear left portion 28, the right face portion 32, the step portion 33 and the left face portion 34 are rectangular panels disposed side by side and extending parallel to the central axis 11. The right face portion 32 merges with the front right portion 25 at a right corner 36 and the left face portion 34 merges with the front left portion 27 at a left corner 37. The right corner 36 and the left corner 37 are located from the rear wall 22 the same perpendicular distance and thus are disposed in the same flat plane as the right face portion 32. The left face portion 34 extends from the left corner 37 towards the rear wall 22 as it extends toward the inner edge of the step portion 33.
A front step corner 40 is defined between the right face portion 32 and the step portion 33. A rear step corner 41 is provided between the left face portion 34 and the step portion 33. The side wall 20 has an interior surface 38 and an exterior surface 39. About the front step corner 40, the interior surface 38 over the right face portion 32 forms an angle A with the interior surface 38 over the step portion 33. About the rear step corner 41, the exterior surface 39 over the left face portion 34 forms an angle B with the exterior surface 39 over the step portion 33. The angle A is shown as being 90 degrees in the first embodiment. The angle B is shown as 83 degrees in the first embodiment.
In collapse of the bottle 10, the front wall 21 and the rear wall 22 are drawn towards each other until in the fully collapsed condition of
Referring to
The right face portion 32 merges with the top wall 17 at a top corner 45, the step portion 33 merges with the top wall 17 at a top corner 46 and the left face portion 34 merges with the top wall at a top corner 48. Similarly, the right face portion 32 merges with the bottom wall 18 at a bottom corner 49, the step portion 33 merges with the bottom wall 18 at a bottom corner 50 and the left face portion 34 merges with the bottom wall 18 at a bottom corner 51. The front step corner 40 and the rear step corner 41 assist in providing structure to the front wall 21 resistant to collapse of the channelway 42 under conditions which may exist within the bottle 10 when it is being collapsed or collapsed. The corners 45, 46, 47, 48, 49, 50 and 51 further assist in providing structure and rigidity to the channelway 42 under conditions which may exist within the bottle 10 when it is collapsed.
The bottle 10 is to contain a fluid which is to be drawn from the opening 14 as when vacuum conditions are applied to the opening 14 as, for example, by a pump, not shown. The vacuum conditions applied to the opening 14 include a threshold vacuum condition required to draw a substantial portion of the fluid from the opening as, for example, to substantially draw all of the fluid from the bottle 10 so as to achieve the collapsed condition as illustrated in
The bottle is preferably formed by a manufacturing process including a blow molding step in which a parison or pre-mold is clamped in a mold and compressed gas blown into the parison or pre-mold to push the plastic outwardly into the mold.
The bottle 10 of
The front right portion or panel 25 is joined to the rear right panel 26 over a mid-corner 61. The rear right portion or panel 26 is joined to the rear wall 22 over a rear corner 62. The front left portion or panel 27 is joined to the rear left panel 28 over a mid-corner 63. The rear left portion or panel 28 is joined to the rear wall 22 over a rear corner 64.
The bottle 10 is preferably blow molded from a preferred parison 70 schematically shown in
This configuration of the bottle 10 is advantageous so that the bottle will collapse as indicated in
Reference is made to
In the embodiment of
The front wall 21 has a top header portion 130 and a bottom header portion 131, each disposed in a plane perpendicular to the center plane 100 and generally parallel to a plane in which each of the top wall 17 and the bottom wall 18 lies. Each of the panels 101 to 112 extends between the top header portion 130 and the bottom header portion 131 with each of the channelways 122 to 125 extending to the header portions and the engagement of the panels 101 to 112 with the header portions assisting in providing resistance of the channelways 122 to 125 to collapse under vacuum conditions in the bottle. As seen in
The top header portion 130 extends inwardly with a number of triangular portions bridging between the panels 101 and 102; between the panels 103 and 104; between the panels 105 and 106; between the panels 107 and 108; between the panels 109 and 110 and between the panels 111 and 112. Preferably, each of these triangular portions are interconnected along a continuous edge portion which extends outwardly of the apexes as, for example, between the panels 101 and 102, 103 and 104, 105 and 106, 107 and 108, 109 and 110 and 111 and 112. These triangles and the joining edge portion along the apexes provides the top header portion 130 as a reinforcing member tending to provide transverse stability to the front wall across its width and together with the panels 101 to 112 forming the channelways to provide a relatively rigid three dimensional structure on the front wall 21 which resists deflection both longitudinally and transversely of the front wall 21. However, as is to be appreciated, each of the channelways as, for example, the center channelway 123 formed between the panels 106 and 107, extends longitudinally through the top header portion 130 and the bottom header portion 131 to provide for fluid passage through the channelway 123 from the closed end 12 to the open end 13 of the bottle.
In the second embodiment, the rear right portion 26 of the right wall 23 includes a fold slot 150 extending longitudinally therein and, similarly, the rear left portion 28 of the left wall 24 includes a left fold slot 151 extending longitudinally therein. These right and left fold slots 150 and 151 extend inwardly in the respective right and left walls 23 and 24 and provide longitudinally extending weakened portions of further reduced wall thickness about which each of the rear right portion 26 of the right wall and the rear left portion 28 most readily fold assisting the side wall 20 towards a controlled collapse of the right wall 23 inwardly upon itself and the left wall 24 inwardly upon itself and towards the rear wall 22 as the front wall 21 is drawn toward engagement with the rear wall 22.
The arrangement of a plurality of panels such as 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111 and 112 with the top header portion 130 and a bottom header portion 131 such as shown in the second embodiment is useful in collapsible bottles to assist in maintaining the wall which contains these panels and header portions to have a dimensional stability which resists undo twisting or bending of the front wall either transversely or longitudinally. Thus, the structure of the channelway forming panels 101 to 112 and the top and bottom header portions 130 and 131 may be provided in both the front wall 21 and the rear wall 22 of bottles, particularly in bottles which may be formed with relatively thin walls such as, for example, a bottle of the type shown in U.S. Design Pat. No. D350,070 to Ophardt, issued Aug. 30, 1994, the disclosure of which is incorporated herein by reference. Such a bottle has a close to square configuration and the right wall and left wall are provided with a structure to assist in inward collapse of the right wall and the left wall. In a bottle similar to that as shown in Ophardt D350,070, which may be square, the folding of the right wall and the left wall upon themselves may substantially prevent the front wall and the rear wall from coming into engagement with each other nevertheless the front wall and the rear wall will come to collapse upon the folded portions of the side walls and the channelways provided in the front wall will assist in ensuring that there is a flow channel and flow passageway 44 formed longitudinally within the channels during all conditions of collapse of the bottle.
Reference is made to
Reference is made to
In the first embodiment of
Reference is made to
The preferred first, third and fourth embodiments illustrate arrangements with a single channelway 42 and the second and fifth embodiments illustrate embodiments with a plurality of channelways. Each of the embodiments illustrates one or more such channelways merely in the front wall 21. However, the channelways could alternatively be provided exclusively in the rear wall 22 or in both the front wall 21 and the rear wall 22.
The preferred first to fourth embodiments illustrate the different panels of the front wall 21 forming a channelway as being disposed in flat planar planes, however, as seen in the fifth embodiment, this is not necessary and each of the panels of the front wall 21 forming a channelway may be arcuate or curved. The resultant structure forming a channelway needs to have sufficient resistance to collapse that a flow channel through the channelway will provide and maintain for longitudinal fluid flow and form a flow passage between the channelway and the rear wall 22 for fluid flow therethrough under threshold vacuum conditions to be applied to fully collapse the bottle.
The particular cross-sectional shape of a bottle useful with the present invention is not limited. The bottle may be rounded or rectangular or square. Insofar as two opposed surfaces of the side wall of the bottle are drawn together, characterized as interior surfaces of a front wall and a rear wall, the provision of the channelway assists in ensuring that there may be a longitudinal flow channel for fluid to pass through and out the outlet of the bottle under appropriate vacuum conditions to collapse the bottle and all conditions that the bottle assumes between a full or un-collapsed condition and a fully collapsed condition including all partially collapsed conditions in between.
While advantageous, it is not necessary that the central axis 11 be displaced towards the rear wall and the central axis may be displaced towards the front wall or equidistance between the rear wall and the front wall. For example, in the embodiment of
The preferred embodiments illustrate a generally rectangular bottle in which the front wall and rear wall are spaced a lesser distance than the right wall and left wall are spaced. While this is preferred, it is not necessary.
The preferred embodiments illustrate a bottle 10 adapted to collapse with the right wall and left wall drawn inwardly to fold about themselves. This is preferred, but not necessary. The bottle may have the right wall and the left wall adapted during collapse to extend outwardly and fold about themselves increasing the overall width of the bottle as seen looking at the front wall. For example, the bottle may have a configuration similar to that of the bottle of U.S. Pat. No. 5,080,260 to During, issued Jun. 14, 1992, the disclosure of which is incorporated herein by reference, with each of the right wall and the left wall to be extended outwardly at their center as seen in top view and in collapse to become folded about themselves and extend outwardly, however, in accordance with the present invention, with at least one of the front wall and the rear wall to have at least one channelway of the type disclosed in the embodiments of this invention extend longitudinally such that in collapse with engagement of the front wall and the rear wall a longitudinal flow channel and flow passageway are maintained at all times during collapse of the bottle as the front wall and the rear wall are drawn into engagement. It is to be appreciated that the bottle of During increases in overall width as it collapses and, therefore, is often not useful to be placed inside a closed housing as in a soap dispenser in which it may not be disadvantageous for the housing to have increased dimensions merely to accommodate a bottle as it increases in a dimension while collapsing.
Each embodiment of a collapsible bottle 10 is in accordance with the present invention is preferably formed of plastic or other materials with the walls of the bottle being sufficiently thin as to be deformable as under vacuum conditions in the bottle. The collapsible bottles are preferably formed by blow-moulding processes.
The collapsible bottles in accordance with the present invention is adapted for containing and dispensing fluids such as hand cleaning fluids but not limited to hand cleaning fluids. The fluids to be dispensed can include preferably fluids with high viscosity and fluids which contain solid materials such as particulate matter, for example, pumice to be used as grit in abrasive cleaning fluid. The particular nature of the fluid to be dispensed is not limited and may be any manner of product including, for example, flowable creams, food products such as ketchup and sauces, medicinal fluids, paints, pastes, adhesives, grease and lubricating materials.
While the invention has been described with reference to the preferred embodiments, many modifications and variations will now occur to a person skilled in the art. For a definition of the invention, reference is made to the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2863342 | Sep 2014 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
2685316 | Krasno | May 1952 | A |
3580427 | Clarke | May 1971 | A |
3727803 | Cobb | Apr 1973 | A |
3926341 | Lhoest | Dec 1975 | A |
5080260 | During | Jan 1992 | A |
5174458 | Segati | Dec 1992 | A |
6223932 | Usui | May 2001 | B1 |
7530475 | Ophardt | May 2009 | B2 |
8365954 | Ophardt et al. | Feb 2013 | B2 |
8672183 | Ophardt et al. | Mar 2014 | B2 |
20080302830 | Loth-Krausser | Dec 2008 | A1 |
20140217117 | Mirbach | Aug 2014 | A1 |
20150239599 | Leroux et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2014029575 | Feb 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20160075476 A1 | Mar 2016 | US |