The invention relates to suspension systems for accommodating intra-ocular lenses that occupy the natural lens space within the eye.
Accommodating intra-ocular lenses that have an ability to re-engage the natural kinetics of the ciliary muscle/suspensory ligament/lens capsule complex after lens extraction to allow the eye to shift focus from distance to near have emerged. Within this competitive field, much attention has focused upon an ability to insert these types of lenses through small corneo-scleral incisions within the eye. Once positioned within a vacant lens capsule located behind the pupil, the suspension systems attached to the lenses are required to expand in a controlled manner to re-establish to a functional geometric configuration of the lens capsule/suspensory ligament complex in order to facilitate a connection between movement of the ciliary muscles of the eye and a deformable optical interface within the optical element of the device. During this process, the deformable optical interface is forced into a high energy state, focusing the eye upon distant objects in space.
In the past, suspension systems have used various approaches to control their structural strength and shape recovery times. In some cases they have been too bulky and cumbersome to fit through small incisions. Additionally, it was found that even at their best, the characteristic of the suspension systems being able to retain structural strength while exhibiting very slow recovery times was not achievable. There is therefore a need for improvement in suspension system designs for accommodating intraocular lens.
The foregoing examples of the related art and limitations related thereto are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
One aspect of the invention provides a mechanism to control the recovery time of expandable suspension systems for accommodating intraocular lenses that comprise a hollow cavity, or a plurality of hollow cavities, having at least one opening communicating the cavity with fluid of its external environment; wherein the walls lining the cavities exhibit sufficient structural elasticity that they return toward their habitual shapes after being compressed by external force. According to one aspect, at least one wall lining the cavity may restrict the return of fluid back into the cavity. The collapsible cavity may be integrated within a supporting element or an optical element to regulate the shape recovery of structural elements that mediate the transfer of kinetic energy from the action of muscles of the eye to a deformable optical interface within the lens space behind the pupil of the eye. The collapsible cavity may be integrated within a supporting element comprising one or a plurality of legs for supporting the intra-ocular lens against an interior surface of said lens capsule.
The invention provides a suspension system for suspending an intra-ocular lens in the lens capsule of an eye, the suspension system comprising a support element, the support element comprising a surface for bearing against the inner surface of a lens capsule to thereby transmit ciliary force to the intra-ocular lens, and a collapsible cavity formed in the support element having at least one opening communicating the interior of the cavity with the adjacent space in the interior of the lens capsule to transfer fluid from the interior of the eye into and out of the collapsible cavity, wherein the support element in the vicinity of the cavity is sufficiently elastic to permit the cavity to be deformed under compression from ciliary force and to return to a rest configuration after the ciliary force is reduced.
The suspension system may comprise a plurality of collapsible cavities configured in parallel array within a supporting element for supporting the intra-ocular lens against an interior surface of the lens capsule. The collapsible cavities may each comprise lateral walls angled to the horizontal to facilitate the compression of the external opening and closing of the collapsible cavities. The lateral walls may be accommodated into a space within a horizontal wall of the collapsible cavity when compressed. The walls of the collapsible cavity may substantially close the opening to the cavity when compressed by ciliary pressure and open the opening when ciliary pressure is released, whereby at least one wall lining the collapsible cavity may function as a flap valve.
In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following detailed descriptions.
Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
Throughout the following description specific details are set forth in order to provide a more thorough understanding to persons skilled in the art. However, well known elements may not have been shown or described in detail to avoid unnecessarily obscuring the disclosure. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
The invention comprises hollow cavities 40 formed within the haptics or suspension systems of accommodating intraocular lenses. Within the lens capsule of the eye, the ambient ocular fluid is displaced out of a hollow cavity 40 by force generated by ciliary muscle action as show by vectors B in
Certain applications for a hollow cavity within haptic regions of intraocular lenses require that the cavity return relatively slowly back to their habitual shapes, such as that described in U.S. Pat. No. 8,579,971 wherein the imbibing of liquid back into a sealed cavity having semi-permeable walls is used to control compression forces acting upon an accommodating intraocular lens. This same principle applies to hollow cavities 40 as illustrated by
The rate of flow of liquid into and out of a hollow cavity 40 is dependent upon a number of factors, which include but are not limited to the following; material elasticity, wall thickness, the viscosity of the fluid moving in and out of the hollow cavities, surface tension induced by the materials used to fabricate the walls of the hollow cavity, the surface area of the orifice or orifices that communicate between the interior of the hollow cavity and the surrounding fluid medium, the shape of the orifices of the hollow cavity 40, patterns created by the location of multiple hollow cavities, the efficiency of the flap valve 30 or any combination of these factors.
As shown in cross-section in
Various shapes of the walls lining the hollow cavity can be formatted to customize the rate of return of liquid back into hollow cavity 40. The flap valve 30 can be configured to close completely, sealing off the inflow of liquid altogether or it can be designed to close partially to allow restricted flow, as shown in
As shown in cross-section in
The materials required for the suspension elements comprising hollow cavities 40 are elastic with a strong memory, readily resuming their original size and shape after being compressed, stretched or otherwise deformed. Materials commonly used for intraocular lens fabrication having good shape memory characteristics include but are not limited to the following classifications: silicones, silicone hydro-gels, hydrophobic and hydrophilic acrylics, polyethylene, polypropylene, polyurethane and co:block polymers of these. Hollow cavities 40 are preferably laser sculpted in the carriage material but may also be formed by molding, carving or the like.
By providing hollow cavities in the carriage 60 of the intra-ocular lens 10, compressive forces allow the lens to accommodate adjustment to the optical element 50 while having the ability to recover the original shape of the lens quickly when the compressive force is released. The specific configuration of the supporting legs 20 of carriage 60 in the disclosed embodiment, which provide a concave upwardly facing profile (as shown in cross-section in
Collapsible cavities as described above may also be integrated within the optical element 50 or other optical element to regulate the shape recovery of structural elements that mediate the transfer of kinetic energy from the action of the ciliary muscles of the eye to a deformable optical interface within the lens space behind the pupil of the eye.
The shape recovery characteristics of the present invention provide a means whereby structural elements placed within the lens space inside the human eye can be oriented to efficiently harness kinetic energy initiated by ciliary muscle movement through its connection with the zonular/lens capsule complex. This efficiency can be exploited to induce curvature change for various designs of accommodating lenses but it can also be used to control and/or generate electrical current.
Various electro-mechanical lens designs having alterable optical properties have recently emerged. In general they change curvature or refractive index in response to the flow of an electrical current. The flow of electricity within the eye can be regulated by electrical switches placed between the lens capsule and structural elements of the subject suspension system. Similarly, electrical current can be generated by micro-sized electrical generators placed between the lens capsule and structural elements of the suspension system. With the use of an expandable lens suspension system within the lens space of the eye, ciliary muscle action can be transferred via the zonular/lens capsule complex to activate a wide array of such electrical components.
The present invention thus can efficiently harness kinetic energy derived from movement of the zonular/lens capsule complex for a variety of mechanical and electrical adaptations that can generate or alter light that ultimately impinges upon the retina of each recipient eye.
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are consistent with the broadest interpretation of the specification as a whole.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2928056 | Apr 2016 | CA | national |
The present invention relates to the applicant's inflatable lens/lens retainer as disclosed in U.S. patent application Ser. No. 12/671,573 entitled INFLATABLE INTRAOCULAR LENS/LENS RETAINER filed Aug. 12, 2008, now U.S. Pat. No. 8,579,971 and pending continuation application Ser. No. 14/076,102 filed on Nov. 8, 2013, which are incorporated herein by reference in their entirety, as well as U.S. provisional application No. 61/761,569 filed Feb. 6, 2013 entitled LASER SCULPTED COMPARTMENTS WITHIN SUSPENSION SYSTEMS FOR INTRAOCUALR LENSES and international application publication no. WO 2014/121391 A1 published 14 Aug. 2014 entitled EXPANDABLE SUSPENSION SYSTEMS FOR INTRAOCULAR LENSES which are incorporated herein by this reference. The present application claims the benefits, under 35 U.S.C. § 119(e), of U.S. Provisional Application Ser. No. 62/341,430 filed May 25, 2016 entitled “Collapsible Cavities within Suspension Systems for Intra-ocular Lenses”, which is incorporated herein by this reference.
| Filing Document | Filing Date | Country | Kind |
|---|---|---|---|
| PCT/CA2017/050623 | 5/24/2017 | WO | 00 |
| Publishing Document | Publishing Date | Country | Kind |
|---|---|---|---|
| WO2017/181295 | 10/26/2017 | WO | A |
| Number | Name | Date | Kind |
|---|---|---|---|
| 4585457 | Kalb | Apr 1986 | A |
| 4710194 | Kelman | Dec 1987 | A |
| 4750904 | Price | Jun 1988 | A |
| 4892543 | Turley | Jan 1990 | A |
| 4932966 | Christie et al. | Jun 1990 | A |
| 5026393 | Mackool | Jun 1991 | A |
| 5476514 | Cumming | Dec 1995 | A |
| 5496366 | Cumming | Mar 1996 | A |
| D395512 | Korenfeld | Jun 1998 | S |
| 7755840 | Batchko et al. | Jul 2010 | B2 |
| 7981155 | Cumming | Jul 2011 | B2 |
| 8064142 | Batchko et al. | Nov 2011 | B2 |
| D688801 | Doraiswamy et al. | Aug 2013 | S |
| D689611 | Doraiswamy et al. | Sep 2013 | S |
| D691273 | Doraiswamy et al. | Oct 2013 | S |
| 8551164 | Willis et al. | Oct 2013 | B2 |
| D699851 | Doraiswamy et al. | Feb 2014 | S |
| D702346 | Ben Nun | Apr 2014 | S |
| D728789 | Doraiswamy et al. | May 2015 | S |
| D729390 | Doraiswamy et al. | May 2015 | S |
| 9204962 | Silvestrini | Dec 2015 | B2 |
| 9427922 | Reboul et al. | Aug 2016 | B2 |
| 20030109926 | Portney | Jun 2003 | A1 |
| 20030158588 | Rizzo et al. | Aug 2003 | A1 |
| 20050216080 | Snyder | Sep 2005 | A1 |
| 20070118216 | Pynson | May 2007 | A1 |
| 20080015689 | Esch et al. | Jan 2008 | A1 |
| 20090030514 | Niwa et al. | Jan 2009 | A1 |
| 20090264998 | Mentak et al. | Oct 2009 | A1 |
| 20100179653 | Argento et al. | Jul 2010 | A1 |
| 20100231783 | Büeler et al. | Sep 2010 | A1 |
| 20110160852 | Mentak et al. | Jun 2011 | A1 |
| 20110224788 | Webb | Sep 2011 | A1 |
| 20130176628 | Batchko et al. | Jul 2013 | A1 |
| 20140222013 | Argal et al. | Aug 2014 | A1 |
| 20140368789 | Webb | Dec 2014 | A1 |
| 20150055084 | Stevens et al. | Feb 2015 | A1 |
| Number | Date | Country |
|---|---|---|
| 1192351 | Aug 1985 | CA |
| 2630781 | May 2008 | CA |
| 2793844 | Oct 2011 | CA |
| 2800217 | Nov 2012 | CA |
| 101238395 | Aug 2008 | CN |
| 101551511 | Oct 2009 | CN |
| 101632030 | Jan 2010 | CN |
| 2775961 | Dec 2018 | EP |
| 9011736 | Oct 1990 | WO |
| 20040010904 | Feb 2004 | WO |
| 20060023386 | Mar 2006 | WO |
| 20070107589 | Sep 2007 | WO |
| 2008024766 | Feb 2008 | WO |
| 2009021327 | Feb 2009 | WO |
| 2010103037 | Sep 2010 | WO |
| 2011154972 | Dec 2011 | WO |
| 2013016804 | Feb 2013 | WO |
| 2013126986 | Sep 2013 | WO |
| 2014121391 | Aug 2014 | WO |
| 2015024136 | Feb 2015 | WO |
| 2015066502 | May 2015 | WO |
| 2016033217 | Mar 2016 | WO |
| 2016161519 | Oct 2016 | WO |
| Number | Date | Country | |
|---|---|---|---|
| 20200054443 A1 | Feb 2020 | US |
| Number | Date | Country | |
|---|---|---|---|
| 62341430 | May 2016 | US |