This invention relates generally to a container for holding items therein and is collapsible when empty.
Containers are used for holding items such as goods, in storage and while being transported to destinations by vehicles including trucks, trains, aeroplanes and ships. The costs of storage and transportation of the goods in containers are based on the respective volumes occupied by the containers. Accordingly, the costs are the same even if the containers are empty or not filled to capacity.
Emptied containers generally need to be stored before they are reemployed to transport goods. Many of the containers need to be transported empty to different locations where goods are to be loaded. To reduce storage and transportation costs for the empty containers, it is desirable to have containers that can be collapsed during storage and in transit. Collapsible containers have previously been proposed. However, the prior art collapsible containers known to the inventor do not meet the stringent container standards set by the transportation authorities and insurance bodies. The standards require the containers to pass various structural strength tests such as shock tests in relation dropping from a height above floor level, tipping, rolling, stacking, racking, etc. None of the known collapsible containers pass all these tests.
The standards also require the containers to be spray or water proof.
An object of the present invention is to alleviate or to reduce to a certain level one or more of the above prior art disadvantages.
In one aspect therefore the present invention resides in a collapsible container comprising a base structure, a top structure, opposed side covers arranged between the base structure and the top structure, each said side covers having a lower section frame pivotally connected to said base structure and a top section frame pivotally connected to said top structure, and a central hinge arrangement configured so that the top section frame is pivotally movable relative to the lower section frame, whereby the side covers are selectively positionable between an erected position in which the top structure is remote from the base structure and a collapsed position in which the top structure is at or adjacent to the base structure, in the erected position the container presenting an interior space between the base and top structures and between opposed open ends of the container, end covers arranged to be pivotally movable between an upright position for covering respective open ends, and a down position for allowing the side covers to be movable to the collapsed position, the central hinge arrangement being associated with central load distribution means arranged so that in the erected position load is distributed between the upper and lower section frames of each side cover, and a tensioning arrangement for tensioning the side covers and/or the end covers in the erected position.
In preference, the central hinge arrangement for each side cover includes at least one pair of first central hinge elements fixed to the top section frame and a second hinge element fixed to the lower section frame, and a bridging member provided for the or each pair of the first and second central hinge elements, the or each bridging member having compatible hinge elements at ends thereof and the compatible hinge elements are arranged to cooperate with respective paired first and second hinge elements so that the top section frame is pivotally movable relative to the lower section frame.
The central load distribution means may be associated with the or each of said paired first and second hinge elements so as to distribute load between the top and lower section frames when the container is in the erected position. It is preferable that the central load distribution means include a central load transfer member for the or each of said paired first and second hinge elements, and the central load transfer member has opposed ends, one end thereof being fixed to or integrally formed with one of said top and lower section frames, and the other end thereof being arranged to engage the other of said top and lower section frames when the container is in the erected position.
In preference, the tensioning arrangement is arranged to tension the side covers in a substantially vertical direction along the side covers, and in a substantially horizontal direction along the side covers.
The tensioning arrangement may include first tensioning means having one or more paired central tensioning elements arranged to tension one or each side cover in a substantially vertical direction. The one or more paired central tensioning elements are respectively fixed to the top and lower section frames and are configured to engage each other to thereby tension said one or each side cover.
It is further preferred that the first tensioning means have one or more paired upper tensioning elements and/or one or more paired lower tensioning elements for one or each side cover. The one or more paired upper tensioning elements are respectively fixed to the top section frame and the top structure, and are configured to engage each other to thereby tension said one or each side cover. The one or more paired lower tensioning elements are respectively fixed to the lower section frame and the base structure, and are configured to engage each other to thereby tension said one or each side cover.
The first tensioning means may have sets of said tensioning elements spacedly arranged along each side cover, and each set includes one pair of the central tensioning elements and one pair of the upper and/or lower tensioning elements.
It is preferred that the one or more paired central tensioning elements are preferably arranged so that the tension on said one or each side cover is variable. It is preferred that one of said paired central tensioning elements is a projection, and the other of said paired central tensioning elements is rotatable and has a recess with a cam surface configured to engage the projection when it is in the recess. The cam surface is shaped to vary said tension when said other of said paired central tensioning elements is rotated. The projection may be in the form of a pin or a hook.
The lower and/or the upper paired tensioning elements may similarly configured to vary tension on the side covers.
Preferably, the central load transfer member is configured to extend between ends of a respectively side cover. The tensioning arrangement may be arranged to be selectively positioned to maintain the central load transfer member in engagement the other of said first and second top and lower section frames when the container is in the erected position. As such, the side covers become fully covered solid walls in the erected position.
The top section frame of each side cover may have a load bar arranged to engage a clamping plate extending from the bridging member when the container is in the erected position. The load bar may also engage the central load transfer member while the container is in the erected position.
Preferably, each side cover has one or more panels arranged to cover each of the top and lower section frames. Advantageously, the one or more panels having a corrugated or wavy profile.
The top structure may have a top skirting along each side thereof and the top skirting is arranged in pivotal connection with the top section frame. Preferably, the container has at least one top hinge arranged to pivotally connect the top skirting with the top section frame. Top load distribution means is advantageously associated with the at least one top hinge to distribute load between the top skirt and the top section frame. The top load distribution means may have one or more top load bearing bars associated with the or each said at least one top hinge. The tensioning means may also have the upper paired tensioning elements arranged to lock one or more of the one or more top load bearing bars in position. The top section frame may have at least one upper gusset and the at least one top hinge having a first top hinge element fixed to respective upper gusset and a compatible second top hinge element fixed to the top skirting.
The base structure may have a base skirting along each side thereof and the base skirting is arranged in pivotal connection with the lower section frame. Preferably, the container has at least one lower hinge arranged to pivotally connect the base skirting with the lower section frame. Base load distribution means is advantageously associated with the at least one lower hinge to distribute load between the base skirt and the lower section frame. The base load distribution means may have one or more lower load bearing bars associated with the or each said at least one lower hinge. The tensioning means may also have the paired lower tensioning elements arranged to lock one or more of the one or more lower load bearing bars in position. The lower section frame may have at least one lower gusset and the at least one lower hinge having a first lower hinge element fixed to respective upper gusset and a compatible second lower hinge element fixed to the base skirting.
Advantageously, the central hinge arrangement includes a plurality of paired first and second hinge elements, and the container includes a number of top hinges and a like number lower hinges arranged in substantial alignment with corresponding paired first and second hinge elements. This arrangement provides further improvement to load distribution as load is shared more evenly across the side covers.
It is preferred that each side cover includes a sealing arrangement having top sealing means for sealing between the top structure and the top section frame, and lower sealing means for sealing between the base structure and the lower section frame. The central hinge arrangement may also has central sealing means for sealing between the top and lower section frames.
The base structure and/or the top structure may have pockets configured to receive forks of a lifting device. Preferably each said pockets are formed of a hollow tubular member extending between the base/top skirtings. More preferably, the base/top structure includes reinforcement means fixed to the base/top skirtings and arranged to reinforce structural strength of the hollow tubular members.
Desirably, the base structure has a number of spaced cross members with ends thereof fixed to the base skirtings and a floor supported by the base cross members.
The container may have an open or closed top structure. The close top structure preferably has a number of spaced cross members with ends thereof fixed to the top skirtings and a top cover supported by the top cross members.
The container may have base corner fittings and top corner fittings arranged respectively at corners of the base structure and the top structure. It is preferred that each of the top and base corner fittings has at least one hole arranged to receive a container locking pin for locking to another container thereon or thereunder.
Preferably, the end covers are pivotally connected to the base structure and arranged to be pivotally movable between the down position at which the end covers resting on the base structure and the upright position at which the end covers closing the open ends. More preferably, at least one of the end covers is biassed to move to its down position and/or upright position.
Each said end covers may have spaced posts. One end cover may have a cover member spanning the posts, and the other end cover may have one or more doors arranged between the posts. In preference, the tensioning arrangement further includes second tensioning means arranged to tension each side cover in a substantially horizontal direction traversing the end covers. In one form, the second tensioning means includes one or more paired tensioning elements, one element of a paired tensioning elements being fixed to one of said posts and the other element of the paired tensioning elements being fixed to one of said side covers, and arranged to engage with each other when the end covers are in the upright position, whereby the side covers are in tension. Each tensioning element on the posts may have a cam surface arranged to be positionable to engage the other element on the side cover in the engaged position. As for the tensioning elements of the first tensioning means, the paired tensioning elements may be configured to be adjustable for varying tension on the side walls.
It is further preferred that each post includes a flange formed with the one tensioning elements, and each said side cover includes end flanges formed with said other tensioning elements of the paired tensioning elements. Said one element(s) may be configured as an aperture(s) and said other tensioning element(s) may be configured a hook(s) arranged to fit in the corresponding aperture(s) when the end covers are in the upright position.
Each of the posts have a lower end and an upper end. Preferably, the second tensioning means includes a load bearing plate arranged at the lower end of each post and a positioning element arranged at the upper end of each post. The load bearing plates of the posts are configured to engage with corresponding side covers when the end covers are in the upright position. The positioning elements of the posts are configured to engage with a complimentary positioning elements on the top structure when the end covers are in the upright position. The load bearing plates and the positioning elements are arranged to place the side covers in tension in said vertical direction.
One or both of the end covers may include a door selectively positionable between an open position for accessing interior of the container and a closed position for closing access to the interior.
The top structure may also have pockets configured to receive forks of a lifting device. Preferably each said pockets of the top structure are formed of a hollow tubular member extending between the top skirtings. More preferably, the top structure includes reinforcement means fixed to the top skirtings and arranged to reinforce structural strength of the hollow tubular members.
The top structure may be configured with a slight bow when the side covers are in the collapsed position, and the tensioning arrangement is arranged to cause the top structure to be substantially level when the side covers are under tension. Typically, for a standard shipping container, the bow is in the order of 1 to 3 milliliter.
Each said post may also be configured with a slight bow when in the lowered position, and the tensioning arrangement is arranged to cause the posts to be substantially straight when they are under tension.
In order that the present invention can be more readily understood and be put into practical effect reference will now be made to the accompanying drawings which illustrate non-limiting embodiments of the present invention and wherein:
Referring initially to
The end covers 16 and 18 are pivotally connected to the base structure 20. These end covers can be moved to a down position resting on the floor structure 20 as shown in
Each of the side covers 12 and 14 are formed of a top section frame 30 and a lower section frame 32. A central hinge arrangement 34 pivotally connect the section frames 30 and 32 of each of the side covers 12 and 14. Corrugated steel panels 36 are secured to the section frames 30 and 32 by any known securing means such as welding, or with screws or bolts.
The base structure 20 has upturned base skirtings 38 and 40 at sides thereof, a number of spaced cross members 42 extending between the base skirtings 38 and 40. A floor 44 is supported on the cross members 42. The base structure 20 also has fork pockets 46 and 48 for insertion of the forks of a forklift truck. Each of the pockets 46 and 48 are formed of a tubular member 50. As can be seen in
The top structure 22 has down turned top skirtings 54 and 56 (see
The end cover 18 as shown in
The end cover 16 shown in
The end covers 16 and 18 have pivot pins 104 pivotally connected to the end frame members 84 and 86 of the base structure 20. As can be seen in
The central hinge arrangement 34 has a number of spaced double hinge 114.
The base skirtings 38 has a number of spaced sleeves 134 in vertical alignment with the double hinges 114. The top skirtings 54 also has a number of spaced sleeves 136 in alignment with the hinges 114. Each of the sleeves 134 are fixed by a hinge plate 135 to the respective skirting 38 and arranged to receive a pivot pin 138 carried on a lower gusset plat 140 that is fixed to a cover panel 36 or to the lower frame section 32. A sealing backing plate 142 is arranged to locate a sealing strip 144 in position. The plate 142 has one end connected to the top edge of the skirting 38 and another end engaging the inside surface of the skirting 38. As shown in
Each of the sleeves 136 at the top skirtings 54 are fixed by a hinge plate 137 to the respective skirting 54 and arranged to receive a pivot pin 146 carried on a top gusset plat 148 that is fixed to the lower frame section 32. A seal backing plate 150 is arranged to locate a sealing strip 152 in position. The sealing backing plate 150 and the hinge plate 137 are arranged similar to that for the base skirting 38 to transfer load from the pin 146.
The arrow heads 154, 156 and 158 show positions where cam members (not shown) can be arranged to apply tension and improve strength of the side covers and the skirtings.
The central hinges 114, the top hinges formed of pins 146 and sleeves 136, and the lower hinges formed of sleeves 134 and pins 138 cooperate to distribute load on the side overs 12 and 14 evenly between the top skirtings 54 and the base skirtings 38.
As shown in
As shown in
As shown more clearly in
Turning to
A pair of the upper tensioning elements 186 is shown in
The paired lower tensioning elements 188 are connected to the base skirting 38 in a manner similar to the arrangement between the upper tensioning elements 186 and the upper skirting 54.
While not shown, it is understood that the upper skirtings 54 may have a slight bow when they are not subject to tension. Tensioning by the paired elements 184, 186 and 188 would effect in straightening the upper skirtings 54. Thus, the upper skirtings being formed of steel would apply a tension on the side covers 12 and 14 when in the erected position.
It should be noted that a sealing strip 152 is fixed along the upper section frame 30, The strip 152 seals a gap between the upper section frame 30 and the skirting 54 when the side covers 12 and 14 are in the erected position. Another sealing strip (not shown) in arranged to seal a gap between the lower section frame 32 and the base skirting 38 when the side covers 12 and 14 are in the erected position.
Referring to
Each of the posts 78 and 80 for the end covers 18 and 20 has a bevelled top edge 218 for engaging a correspondingly bevelled wedge member 220 fixed to the cross member 66. Each pair of the elements 216 has a retaining block 222 configured to be accommodated in a hole 224 formed in a plate 226 which is fixed to the post 78/80. The block 222 is to a stiffening plate 228 on the cross member 66. When the end covers 16 and 18 are in the upright position, the block 220 of each pair of the top tensioning elements 216 is accommodated in the corresponding hole 224, and the bevelled surface 218 is in engagement with the wedge member 220. Each pair of the elements 216 has a threaded part 230 extending from the block 220, a cam part 232 rotatably mounted on the threaded part, and a threaded nut for adjustably securing the cam part in position on the threaded part. The cam part 232 has a flange 236 with a cam surface, and a head 240 with holes 242 arranged for receiving a rod serving as a lever for turning the cam part 232. The cam part 232 thus serves to vary the engagement point between the bevelled surface 218 and the wedge member 220, and thereby varying the tension along a vertical line on the end covers 16 and 18.
The paired intermediate tensioning elements 214 include a tongue 246 extending from the bent end 166 of an upper section frame 30, and a tensioning lever 248 arranged to engage the tongue 246 as shown in
In
Whilst the above has been given by way of illustrative examples of the present invention, many variations and modifications thereto will be apparent to those skilled in the art without departing from the broad ambit and scope of the invention as herein set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2004904967 | Sep 2004 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2005/001333 | 9/1/2005 | WO | 00 | 2/28/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/024104 | 3/9/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3398850 | Kennard | Aug 1968 | A |
3570698 | Dougherty | Mar 1971 | A |
3765556 | Baer | Oct 1973 | A |
3781947 | Germer | Jan 1974 | A |
4314686 | Marz | Feb 1982 | A |
4388995 | Ahn | Jun 1983 | A |
4577772 | Bigliardi | Mar 1986 | A |
4917256 | Kruck et al. | Apr 1990 | A |
4942971 | Neugebauer et al. | Jul 1990 | A |
5076457 | Marovskis | Dec 1991 | A |
5190179 | Richter et al. | Mar 1993 | A |
5294027 | Plastina | Mar 1994 | A |
5415311 | Coogan | May 1995 | A |
5494182 | Clive-Smith | Feb 1996 | A |
5865334 | Ruiz et al. | Feb 1999 | A |
5897012 | Sortwell | Apr 1999 | A |
6024223 | Ritter | Feb 2000 | A |
6163913 | DiSieno et al. | Dec 2000 | A |
6269963 | Hall | Aug 2001 | B1 |
6299011 | Rosenfeldt | Oct 2001 | B1 |
6415938 | Karpisek | Jul 2002 | B1 |
6520364 | Spykerman et al. | Feb 2003 | B2 |
6792892 | Craig | Sep 2004 | B2 |
6793084 | Wunsch | Sep 2004 | B1 |
7137522 | Dubois | Nov 2006 | B2 |
7526890 | Keng et al. | May 2009 | B1 |
Number | Date | Country | |
---|---|---|---|
20080029510 A1 | Feb 2008 | US |