The present invention relates generally to collapsible containers for fluid and more particularly to collapsible containers having a controlled collapse.
Liquid dispenser systems, such as liquid soap and sanitizer dispensers, utilize collapsible containers filled with the liquid soap or sanitizer. The collapsible containers collapse due to vacuum pressure created in the container as the fluid is pumped out of the collapsible container. Often the collapsible containers twist when collapsing and interfere with operation of the dispensers. In addition, as the fluid draws down in the collapsible containers, the vacuum pressure needed to remove the fluid tends to increase. As a result of the increased vacuum pressure required to pump the fluid out of the container, the volume of the fluid output by the pump is inconsistent. In addition, the increased vacuum pressure requires additional force to operate the dispensers, which is of particular concern in electronically activated dispensers.
Exemplary embodiments of collapsible containers are disclosed herein. Some exemplary embodiments include a container having a plurality of sides. The plurality of sides forms a substantially geometric shape, such as a rectangular shape. A plurality of predetermined fold lines extend substantially across each of the sides and the predetermined fold lines form a plurality of geometric shapes. A plurality of predetermined fold lines for inner folds on a first side are aligned with a plurality of predetermined fold lines for outer folds on a second side.
Some exemplary embodiments include a container having a plurality of sides. The plurality of sides forms a substantially rectangular shape. A plurality of predetermined fold lines extend substantially across each of the sides. The predetermined fold lines form a plurality of substantially trapezoidal shapes, wherein an inside fold line on a first side connects with an outside fold line on a second side.
Some exemplary embodiments of collapsible containers include a container having a having a plurality of predetermine fold lines. At least one predetermined fold line on a first side folds inward, and at least one predetermined fold line on a second side folds outward. The at least one predetermined fold line that folds inward is connected to the at least one predetermined fold line that folds outward, and the predetermined fold lines form a plurality of geometric shapes.
These and other features and advantages of the present invention will become better understood with regard to the following description and accompanying drawings in which:
The exemplary embodiments of collapsible containers shown and described herein may be used for many applications, such as for example, in a refill unit for a soap or sanitizer dispenser. Although these containers may be used in virtually any dispenser, exemplary embodiments of suitable soap and sanitizing dispensers may be found in U.S. Pat. No. 7,086,567, titled Wall-Mounted Dispenser Assembly With Transparent Window, filed on Jul. 25, 2002; and U.S. Patent Publication No. 2010/0059550, titled Pump Having a Flexible Mechanism for Engagement With a Dispenser, filed on Sep. 11, 2009, which are incorporated herein in their entirety by reference. Although these containers may be used with many different types of pumps, exemplary embodiments of suitable pumps for use with these collapsible containers may be found in U.S. patent application Ser. No. 13/208,076, titled Split Body Pumps for Foam Dispensers and Refill Units, filed on Aug. 11, 2011; U.S. Provisional Patent Application No. 61/692,290, titled Horizontal Pumps, Refill Units and Foam Dispensers With Integral Air Compressors, filed on Aug. 23, 2012; and U.S. Provisional Patent Application No. 61/695,140, titled Horizontal Pumps, Refill Units and Foam Dispensers, filed on Aug. 30, 2012, each of which is incorporated in its entirety herein by reference. In some exemplary embodiments, the collapsible containers described herein are connected to a pump, such as those incorporated above, and used to refill soap or sanitizing dispensers, such as those incorporated above. Because exemplary embodiments of dispensers and pumps are fully described in the incorporated patents, they are not described in detail herein.
Prior art bellows-style collapsible containers are disclosed in
In some embodiments, the predetermined fold line occurs where the material that the collapsible container is made out of changes directions of bends. Collapsible container 200 tends to collapse in a controlled fashion; however, these bellows-style collapsible containers require a significant amount of force to collapse. It is believed that bellows-type containers require a significant amount of force to compress because as the container collapses, the material at the fold lines is forced to stretch.
Collapsible container 300 has a plurality of sides 301, 302, 303. Each side is made up of a plurality of trapezoidal shapes 310. The trapezoidal shapes 310 are formed by, for example, predetermined fold lines 312, 314, 316 and 318. Predetermined fold lines 312, 314, 324 are substantially parallel. Trapezoidal shapes 310a and 310b share a common predetermined fold line 314, which is a long predetermined fold line. Trapezoidal shapes 310b and 310c share a common predetermined fold line 324, which is a shorter predetermined fold line.
In one embodiment, collapsible container 300 includes a neck 330 for connecting a pump (not shown) to the container 300. In some embodiments, neck 330 contains threads 332. Collapsible container 300 includes a top 342. In some embodiments top 342 includes a cavity 340. In some embodiments, cavity 340 is sized slightly larger than neck 330 and threads 332 of opening 333. Thus, collapsible container 300 may be stacked on top of other collapsible containers with the neck of one collapsible container located at least partially within in the cavity of a second collapsible container. In some embodiments, the collapsible containers are stacked in a collapsed manner, and in some embodiments they are stacked in a collapsed manner with the neck of one collapsible container located at least partially within the cavity of the second collapsible container.
Many of the fold lines may be characterized as outside fold lines, such as fold lines 312, 315 and 324. Other fold lines, such as, fold lines 313, 314 and 325 may be characterized as inside fold lines. Outside fold lines of one side connect to inside fold lines on adjacent sides. For example, outside fold lines 312 and 324 on side 301 connect to inside fold lines 313 and 325 respectively on side 302. Corner fold lines 318 and 322 are arranged at compound angles and multiple corner fold lines form a “zigzag” pattern, which is more clearly illustrated in
In some embodiments, the collapsible containers are connected to a pump. In some embodiments, the pump is a liquid pump and in some embodiments the pump is a foam pump, or a liquid pump and an air pump. In some embodiments, the container is filled with a liquid, such as, for example, a soap or sanitizer. In some embodiments, the liquid is a foamable soap or sanitizer.
In some embodiments, the container is partially filled with a concentrated liquid for shipping. If the container is partially filled with a concentrate liquid, the container may include a sealable opening for filling the container with a diluent when the container reaches its destination. In some embodiments, the sealable opening is sealed by a pump upon filling the container with the diluent.
In some embodiments, the containers are stackable on one another. In some embodiments, at least a portion of the neck of a first container fits at least partially within a recess in a second container.
The exemplary collapsible containers may be used with liquids such as soap, sanitizers, detergents, beverages or the like.
Other geometrical shapes may be used on collapsible bottles. In some embodiments, various geometric shapes are used such that an inside fold line on a first side intersects with an outside fold line on an adjacent side.
Embodiments of the novel collapsible containers were filled with foamable liquid soap and had standard foam pumps secured to their necks and placed in standard foam dispensers to compare the vacuum pressures generated to collapse the novel collapsible containers with prior art collapsible containers, similar to the one shown and described in
In addition, when a container collapses to a point when the bottle is nearly empty, the vacuum pressure spikes because the bottle is deformed to a point where its surfaces are trying to fold over on each other. The vacuum pressure in the novel collapsible container does not spike as early as the vacuum pressure in the prior collapsible container.
Furthermore, the vacuum pressure for the novel collapsible containers at the inflection point, the point where the pump starts to lose output and at the end (where the pump has three 0.0 ml actuations) was significantly lower in the novel collapsible containers than in the prior containers. Testing of one of the novel embodiments of the collapsible containers revealed vacuum pressures of 2 inches of mercury (inHg) at the inflection point and of about inHg at their ends. The prior art collapsible container had a vacuum pressures for their inflection points of between about 3.8 and 6 inHg and had vacuum pressures at their end ranging from 4 to 7.5 inHg.
While the present invention has been illustrated by the description of embodiments thereof and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Moreover, elements described with one embodiment may be readily adapted for use with other embodiments. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative apparatus and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicants' general inventive concept.
This non-provisional utility patent application claims priority to and the benefits of U.S. Provisional Patent Application Ser. No. 61/736,594 filed on Dec. 13, 2012 and entitled COLLAPSIBLE CONTAINER. This application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61736594 | Dec 2012 | US |