Not applicable.
Not applicable.
1. Field of the Invention
This invention relates to personal watercraft and, more particularly, to watercraft that are portable and capable of being knocked down and erected easily with few or no tools required.
2. Description of Related Art
The present invention is a new type of collapsible kayak (a small paddle-powered watercraft with a covered deck). Using an innovative design system of structural folds in a semi-rigid plastic skin, it achieves unprecedented benefits in terms of performance, weight, portability, ease of assembly, aesthetics and manufacturing cost.
Kayaks, along with canoes and other lightweight, personal watercraft are commonly used for recreational travel on rivers, lakes and oceans. They are also used for fishing and hunting. Currently, commercial kayaks fall into three broad categories. The first and most common are rigid or “hardshell” kayaks. These are typically made of rotomolded or thermoformed plastics, fiberglass, or plywood. While such watercraft have excellent performance characteristics, their large size and weight makes them difficult and inconvenient to store and transport.
Due to these difficulties, there is a significant demand for watercraft that can be collapsed into small packages for storage or transport. The simplest of these are inflatable boats, which use a system of air-filled pneumatic tubes to provide form, structure and flotation. While such watercraft are compact and inexpensive, they are typically slow and hard to maneuver, due to shape limitations imposed by pneumatic systems.
Conventional collapsible kayaks are of a “skin on frame” construction system. That is, they are made up of a structural skeleton, which can be broken down into smaller pieces for storage and transport, and a waterproof fabric skin which fits over the skeleton. This system has the following disadvantages:
In recent years folding kayaks have been developed which, rather than a separate skin and structure, use systems of folding rigid panels. These address some of the problems of skin-on-frame systems, but until now, these have been outweighed by disadvantages:
The present invention seeks to resolve the above problems with collapsible watercraft through an entirely different system of construction and assembly. A fundamental aspect of the invention is the use of a single high-strength foldable panel to fold into the form of a kayak with integrally defined keel, hull, sides, and deck. Using a single folded sheet of high strength, foldable paneling yields the following benefits:
The key to the present invention is a folded rigid shell formed by a folded, one-piece skin panel, which acts as both waterproof envelope, and primary structure. By means of folding along pre-formed creases, it can be transformed from a compact knocked down package, into a rigid three dimensional erected form which is optimized for performance in the water. Other removable rigid structural members, primarily a cockpit rim, rib, and floorboards help maintain the shape and integrity of the shell.
The preferred material for the folded shell is a twin-walled, extruded polypropylene/polyethylene panel, commonly sold under the trade-names Coroplast™, Cor-X™, Inteplast™, and Solexx™. Its benefits to the present invention include:
The key to the present invention is the particular crease pattern imparted to the panel to form the hull of the foldable shell. It is this pattern which allows for the collapsibility of the kayak, while creating a rigid and high-performing form in the water. It also enables the panel to form its own self-storage case. In the preferred embodiment, the skin is formed from a single Coroplast™ panel measuring approximately 5′ by 12′6″; sizes can be altered depending on the size of kayak desired.
The present invention generally comprises a kayak construction designed to create a lightweight, portable, foldable watercraft. A key feature of the invention is that the kayak is formed of a single panel of high strength, bendable, foldable plastic material. The panel is shaped and creased so that it may be folded and assembled into the kayak form for water transport, and may be refolded and reassembled to form an integral self-storage carrying case for storage and transport. The preferred material for the folded shell is a twin-walled, extruded polypropylene/polyethylene panel, commonly sold under the trade-names Coroplast™, Cor-X™, Inteplast™, and Solexx™. These materials combine high strength, positive buoyancy, ability for form living hinges, and durability, all essential for the purposes of the invention.
With regard to
The panel is generally formed with a central section 102 and end sections 103 and 104 extending in opposite directions. The panel 101 is generally symmetrical (enantiomorphic) with respect to a longitudinal axis 105, and the ends 103 and 104 are substantially symmetrical about a lateral-medial axis 106. The end sections 103 and 104 are generally described as truncated conical shapes, and the central section is a rectangle with laterally opposed side edges 107 that are concave, scalloped shapes to define the cockpit perimeter, as will be described below. In addition, a pair of darts 108 (in the manner of tapered tucks provided in fabric constructions and garments) are disposed between the central section 102 and the end section 103, the darts flaring laterally outwardly in laterally opposed fashion. Likewise, another pair of darts 109 extend between the central section and the end section 104 in symmetrical relationship to the first pair.
A plurality of permanent fold lines extend longitudinally the length of the panel 101 and define the hull, sides, and deck of the assembled kayak. Each side of the panel is provided with fold lines 111 and 112 that extend in generally parallel, spaced apart relationship and are aligned intermediate of the longitudinal axis 105 and the tapered edge 113 of section 103. Fold line 11 is curved to define the boat-like curvature of the hull and deck forms, and distinguishes this kayak from other “boxy” rigid folding boats. Each side also includes a longitudinal fold line 114 extending along the longitudinal axis from each end toward the central section 102, and it bifurcates to define fold lines 116 that extend generally parallel to fold lines 111 and 112. In general, the panel portion between outer edge 113 and fold line 111 comprises a portion of the deck 121 of the kayak, the panel portion between lines 111 and 112 forms the side (freeboard) 122 of the kayak, the panel portion between lines 112 and 116 defines the hull 123 of the kayak, and the panel portion between opposed lines 116 comprises the keel 124 of the watercraft. In addition, a V-shaped fold line 117 extends into each end of the panel to define a folded-in dart, as will be described below.
In addition to the longitudinal fold lines and the darts 108, 109, the panel 101 is also provided with transverse fold lines that enable the panel to be folded into a compact storage configuration in which it forms its own case for carrying and transport. A pair of fold lines 119 are provided at opposite ends of the central section 102, demarcating the boundaries with the end sections 103 and 104 and each defining one edge of each of the darts 108 and 109. A pair of fold lines 118 extend in the end sections 103 and 104, each fold line oriented generally transverse to the adjacent outer edge 113 and intersecting the longitudinal axis 105. These fold lines 118 and 119 enable the panel 101 to be folded so that the ends may be brought together in accordion fashion to form a compact knocked down configuration. It may be appreciated that when the panel is folded into the kayak configuration with longitudinally extending vertices, those vertices transect the lateral fold lines and prevent bending movement along the lateral fold lines.
The panel 101 is further provided with mechanisms or devices to releasably secure the panel in the assembled kayak configuration. With regard to
In an alternate embodiment, the u-shaped plastic trim applied to the edge 113 of the panel 101 may have a custom cross-sectional profile, which allows the two deck edges to mechanically mate together, and substantially exclude water from the kayak.
An alternate form of deck closure uses heavy-duty zippers sewn or welded to the corrugated plastic skin. Two separable zippers run from bow to cockpit and stern to cockpit, respectively. By engaging the zippers and zipping the deck up from bow or stern to cockpit, a rapid and continuous assembly is achieved.
In another embodiment of the deck closure assembly, a rigid slotted tube may be provided to mechanically engage the plastic trim applied to the deck edges 113. As this tube is slid over the confronting edges, from the cockpit towards the bow or stern, it draws and clamps together the two deck edges, providing additional structural reinforcement as well as excluding water from the kayak.
The panel 101 is further provided with a plurality of tubular cockpit rim components 136, as shown in
With regard to
The kayak also includes a bow fairing 139, shown in
To set up the kayak, the user follows these steps:
The kayak in the assembled configuration is sleek, streamlined, and seaworthy. It should be noted that the kayak skin (the panel 101) has no openings, holes, seams, gaps, or plugs below the waterline that could otherwise leak and admit water into the kayak. Indeed, the only openings in the assembled watercraft are the sealed deck seams 132 and the cockpit itself. The cockpit rim components 136 may be fashioned to secure a kayak spray skirt, known in the prior art, to prevent water from entering the cockpit.
Note that the fold lines 111, 112, 114, 116-119, as well as the darts 108 and 109 form a pattern that is applied to the double-wall panel material through the use of a steel rule die or the like to crush the double-wall material along those lines to form living hinges that enable the panel to be folded along the fold lines to transform it from a planar object to a kayak watercraft to a self-formed carrying case. This pattern is a fundamental aspect of the invention. Dies may be applied to the panel in a heated state in order to achieve more flexible living hinges, especially in those areas, such as the darts 108 and 109, which require particularly tight folds.
To disassemble the kayak, the steps 106 above are generally reversed. The adjustable buckles 131x are released, the cockpit rim components 136 are disengaged from each other, the rib 137 is removed, and the floorboard 138 is removed. The panel 101 may then be folded into a configuration in which it forms its own integral case for self-storage of the panel 101 and the ancillary components (fairing 139, floorboard 138, and cross-rib 137). The panel is placed in a flattened disposition as shown in
With regard to
In an alternate embodiment, of the case assembly, the skin may be creased with additional transverse folds, which allow the case to be formed purely in an accordioned or spiraling manner, while remaining unfolded in the transverse direction. In this case, forming a case of sufficiently small size to be portable requires that folds break across the cockpit area, requiring a hinged or removable cockpit rim assembly.
A primary advantage of the folding kayak system described above is that it can be manufactured very cheaply, with common manufacturing equipment used for packaging and other applications. Unlike conventional folding kayaks which must be hand-sewn, or rigid kayaks which must be formed out of thermoplastics using complex three-dimensional molds, the current design can be simply die-stamped out of a flat sheet of material, using machinery commonly found in the paper-converting industries. A typical stamping machine can create both the permanent creases which define the folding lines, and the cut outlines, holes and slots required for various assembly functions. Alternatively, the panel may be formed of a solid or foamed polymer or plastic with fold lines formed by CNC-grooved creases.
The skin may be manufactured and sold separately from the structural components, so that if becomes damaged or worn, it may simply be replaced.
Custom extrusions of the preferred twin-walled plastic skin material may be used to enhance the performance and durability of the kayak. For instance, the outer surface of a custom sheet could be made thicker than the inner surface, in order to better resist abrasion and impacts from rocks, snags, sandbars, and other obstacles.
The same methods and materials may be applied to other portable, collapsible watercraft such as canoes, rowboats, dinghies, sailboats and the like. Likewise, they may also be applied to folding furniture, packaging, and portable structures.
The foregoing description of the preferred embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and many modifications and variations are possible in light of the above teaching without deviating from the spirit and the scope of the invention. The embodiment described is selected to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as suited to the particular purpose contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.
This application claims the benefit of the filing date of Provisional Application No. 61/271,521, filed Jul. 21, 2009.
Number | Name | Date | Kind |
---|---|---|---|
2969551 | Snider | Jan 1961 | A |
3806972 | Jackowski | Apr 1974 | A |
6006691 | Wilce | Dec 1999 | A |
6367405 | Smiley | Apr 2002 | B1 |
6615762 | Scott | Sep 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20110017121 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
61271521 | Jul 2009 | US |