The present invention relates to the field of portable lighting devices.
In the field of task lighting, such as for interior construction, painting and similar do-it-yourself applications, it is desirable to provide uniform, diffuse and non-glare lighting for this type of work spaces.
The present invention includes a portable lighting device featuring a collapsible diffuser that provides the integration of features that protect the diffuser, bulbs, etc. for storage and transportation.
The present invention includes a collapsible lighting device comprising: (a) a container having a base portion and a lid portion, the portions adapted to contain an initial volume and adapted to be reversibly moved from a closed position to an open position; (b) at least one light source disposed in the container; and (c) a collapsible envelope of a diffuser material disposed in the container, and adapted to be reversibly moved from a contained position defining a contained volume within the container when the container is in the closed position, to a deployed position wherein the collapsible envelope of a diffuser material defines a volume greater than the contained volume and extending outside the container, when the container is in the open position. The collapsible envelope of a diffuser material may be deployed into any shape amenable to being reversibly collapsed and deployed, but typically and preferably will be fully deployed into a shaped that is generally curved or rounded, such as an ovoid, frusto-ovoid or spherical or a frusto-spherical shape around the light source(s). Other shape may be arcuate or umbrella-like shapes. Typically, the ration of the initial volume to the greater deployed value is in the range of from about 1:2 to 1:4, though other volume ratios outside this range may be used.
In one embodiment, the lid portion is adapted to be twisted with respect to the base portion upon the container being moved to the open position. It may also be lifted upward or completely removed from the balance of the container, or slid to one side.
The collapsible envelope of a diffuser material may be urged into and held and supported in the fully deployed position by any appropriate collapsible structure, mechanism or means, such as a wire frame adapted to be reversibly moved from a closed position to an open position, and to maintain the collapsible envelope of a diffuser material in the deployed position when the container is in the open position, the wire frame adapted to be collapsed into the container when the container is in the closed position.
In a particular embodiment, the lid portion is adapted to be twisted with respect to the base portion upon the container being moved to the open position, and additionally comprising a wire coil adapted to be reversibly moved from a closed position to an open position, and to maintain the collapsible envelope of a diffuser material in the deployed position when the container is in the open position, the wire coil being attached to the portions, so as to be adapted to be collapsed into the container when the container is in the closed position by the twisting action.
The lighting device of the present invention may additionally comprise a frame adapted to be reversibly moved from a closed position to an open position, and to maintain the collapsible envelope of a diffuser material in the deployed position when the container is in the open position, the frame adapted to be collapsed into the container when the container is in the closed position. The frame may comprise a plurality of arcuate wires moveably attached to the container so as to be adapted to be collapsed into the container when the container is in the closed position by the twisting action.
In another variation, the frame comprises a plurality of resilient cords each extending though a plurality of rigid tubular pieces that form a rigid arcuate shape when each respective resilient cord is under extension, and moveably attached to the container so as to be adapted to be collapsed into the container when the container is in the closed position by the twisting action.
In still another embodiment, the lighting device may additionally comprise a fan adapted to move air from outside the container to within the collapsible envelope of a diffuser material so as to be capable of moving the collapsible envelope of a diffuser material from a contained position to a deployed position, and to maintain the collapsible envelope of a diffuser material in the deployed position when the container is in the open position. Likewise, any other form of contained air or active air pressure may be used in place of, or to supplement, the use of collapsible physical diffuser infrastructures, such as for example, those described herein.
Another embodiment of the lighting device of the present invention comprises a fan adapted to move air from outside the container to within the collapsible envelope of a diffuser material so as to be capable of moving the collapsible envelope of a diffuser material from a contained position to a deployed position, and to maintain the collapsible envelope of a diffuser material in the deployed position when the container is in the open position, and the fan adapted to reverse the flow of air from within the collapsible envelope of a diffuser material to outside the container, so as to be capable of moving the collapsible envelope of a diffuser material from the deployed position to the contained position. The fan system may be used alone or in conjunction with other physical frame elements, such as those described herein.
The present invention also includes a collapsible lighting device comprising: (a) a container having a base portion; (b) at least one light source disposed in the container; and (c) a collapsible envelope of a diffuser material disposed in the base portion, and adapted to be reversibly moved from a contained position within the base portion, to a deployed position.
The collapsible envelope of a diffuser material moves to the deployed position by being extended through an arc such that the collapsible envelope of a diffuser material defines a volume having a substantially sectioned spherical shape, when the collapsible envelope of a diffuser material is in the deployed position.
In a preferred version of this embodiment, the fan is adapted to move air from outside the container to within the collapsible envelope of a diffuser material so as to be capable of moving the collapsible envelope of a diffuser material from a contained position to a deployed position, and to maintain the collapsible envelope of a diffuser material in the deployed position.
It is also preferred that the fan is adapted to move air from outside the container to within the collapsible envelope of a diffuser material so as to be capable of moving the collapsible envelope of a diffuser material from the contained position to the deployed position, and to maintain the collapsible envelope of a diffuser material in the deployed position, and the fan adapted to reverse the flow of air from within the collapsible envelope of a diffuser material to outside the container, so as to be capable of moving the collapsible envelope of a diffuser material from the deployed position to the contained position.
The present invention also includes a collapsible lighting device comprising: (a) a container having a base portion and a lid portion, each the portion having a concave disk shape and adapted to contain an initial volume and adapted to be reversibly moved from a closed position to an open position; (b) at least one light source disposed in the container; and (c) a collapsible envelope of a diffuser material disposed in the container, and adapted to be reversibly moved from a contained position defining a contained volume within the container when the container is in the closed position, to a deployed position wherein the collapsible envelope of a diffuser material defines a volume greater than the contained volume and extending outside the container, when the container is in the open position, the collapsible envelope of a diffuser material having a substantially cylindrical shape.
It is preferred that the collapsible envelope of a diffuser material in the deployed position has a cylindrical shape around the at least one light source.
It is also preferred that the device additionally comprises at least one hinged support adapted to be reversibly moved from a closed position to an open position, and to maintain the collapsible envelope of a diffuser material in the deployed position when the container is in the open position, the hinged support adapted to be collapsed into the container when the container is in the closed position; most preferably including compressible or spring means adapted to urge the container toward the open position, such as through the use of sprung hinges or equivalent means.
In this embodiment the base portion and/or the lid portion, preferably both, comprises a translucent plastic material, such as a PVC plastic, depending upon the heat that is to be generated by the light source(s). For CFL bulbs, this is typically not enough heat to affect typical plastics that may be used. It is preferred that the translucence of the base portion and/or the lid portion be approximately that of the diffuser material, typically within about +/−10% to 20% translucence of that of the diffuser material.
The lighting device may be actuated into the open position by any collapsible resilient or sprung means attached to the base and lid portions to urge them apart and maintain them in the open position, such as by using at least one hinged support is attached to the portions, so as to be adapted to be collapsed into the container when the container is in the closed position. It is preferred that the light source(s) comprises a light bulb mounted on the hinged support, or otherwise mounted on a separate resilient or sprung platform such that the bulb(s) move relatively toward the center of the device when in the open position as the device moves into the open position.
The lighting device of the present invention may have the container adapted to be attached to a pole, such as through the use of a groove molded into the container with a hand set screw or interference cam built into it so as to be able to grasp the pole or other vertical structure.
The container may optionally be provided with a hook, such as on the lid portion, to allow it to be hung from any structure. A hook may also be placed along the side of the container to allow it to be hung while in the closed position. Such hooks or other attachment devices, arrangements or means may be integrated into the container.
It is preferred that the lid portion additionally comprises a handle.
The base portion may additionally include a retractable base extension, such as a tripod or the like, to allow the device to better rest upon a flat surface.
It is preferred that the diffuser material is releasably attached to said container to allow it to be conveniently replaced if damaged or soiled, or to allow it to be replaced by a diffuser material of a different nature (color, thickness, material, translucence, etc.), which may be provided as part of a kit or sold separately.
The present invention thus provides the integration of features that protect the diffuser, bulbs, etc. for storage and transportation.
With respect to any of the embodiments of the present invention involving flexible diffuser materials, any appropriate material may be used that provides the acceptable degree of translucence, flexibility and strength in accordance with the application and environment intended for the lighting device. Examples include materials such as those disclosed in U.S. Pat. Nos. 5,782,668; 6,012,826; 6,966,676; and 7,252,414, which are hereby incorporated herein by reference. The flexible diffuser materials may be tinted or colored depending upon the intended use, so as to present a most desirable or beneficial light, such as may be the case for interior painting or for decorative or entertainment use. In addition, as can be appreciated from the embodiments described herein, the flexible diffuser materials and the associated deployment and support mechanism may be made such that the flexible diffuser material may be replaced if damaged or soiled (such as in construction applications), or interchanged in order to alter the translucence and/or color characteristics of the light. This variation may be used to vary the amount of light and the nature of the light output. The flexible diffuser material may also be selected to vary the range and/or direction of light −360° vs. directional—by varying the opacity or translucence of all or sections of the flexible diffuser material. This provides the user the ability to control attributes of the light non-electrically.
With respect to any of the embodiments of the present invention, any one or more appropriate light source(s) may be used. Typically and preferably, these will be light bulbs of the incandescent or fluorescent type, including halogen, incandescent and compact fluorescent light (CFL) bulbs.
The light source(s) may be powered by any appropriate energy source, such as by batteries, rechargeable or otherwise, alternating current from line or from a generator, or from a hand-crank generator, as the requirements and limitations of the specific application dictate.
The device of the present invention may use one or more reflectors in a single or multi-bulb fixture to reduce light loss, or to focus/direct the light as require or as desirable.
In accordance with the foregoing summary, the following describes a preferred embodiment of the present invention which is considered to be the best mode thereof. With reference to the drawings, the invention will be described in detail with regard for the best mode and preferred embodiments.
The containers and their constituent parts as used in accordance with the present invention may be made of a wide variety of materials, such as wood, metals and plastics, including PVC and ABS plastics, as each construction and application requires, and as will be apparent to those skilled in the art relating to containers of this type.
It will also be understood that the containers used in accordance with the present invention may have a wide variety of acceptable closure means, such as threaded and interference fits, such as snap- or twist-fit closures with the top and bottom portions sized and fitted according, and outfitted with corresponding parts and cooperating shapes, as are known and used in the container art.
The helical support rod(s) 27 may be of any appropriate flexible and resilient material, such as wire, plastic, or similar material, that is adapted to be repeatedly bent and/or twisted in accordance with the described action and function.
The light(s) contained in the container 21 may be powered by an on-board battery or rechargeable battery, or a retractable power cord 28, or both.
In this embodiment, as the top portion lid lifts, the flexible structure rotates and expands to create diffuser shape. The container design protects the diffuser shroud when not in use, and closing the container tightens and reduces overall volume.
The flexible diffuser material 36 is expanded from its contained position to the deployed position, and held in that position, by helical support rod(s) 37 that uncoil(s) and expand(s) as how top portion 32 may be twisted with respect to bottom portion 34, as shown by the directional arrow in the Figure. Opposite ends of the helical support rod(s) 37 may be attached to respective portions of the top portion 32 and bottom portion 34 as shown. The helical support rod(s) 37 may be attached to or may be incorporated into the flexible diffuser material 36. As the top portion 32 is twisted with respect to bottom portion 34 back to the closed position, the helical support rod(s) 37 collapse to allow the helical support rod(s) 37 and the flexible diffuser material 36 to be enclosed within the container. The flexible diffuser material 36 may be adapted to present a rounded or ovoid shape, depending upon the combined geometry of the flexible diffuser material 36 and the helical support rod(s) 37.
The helical support rod(s) 37 may be of any appropriate flexible and resilient material, such as wire, plastic, or similar material, that is adapted to be repeatedly bent and/or twisted in accordance with the described action and function.
The light(s) contained in the container 31 may be powered by an on-board battery or rechargeable battery, or a retractable power cord 38, or both.
The flexible diffuser material 46 is expanded in an accordion fashion from its contained position to the deployed position, and held in that position, by arcuate support rods 47 that unfold and expand as top portions 42a and 42b are raised with respect to bottom portion 44. Top portions 42 and 42a may be mated at the top of the device as latches or clasps 45a and 45b are attached to one another, and handle 43 may be telescoped into a higher open position above the open flexible diffuser material 46.
The arcuate support rods 47 may be attached to or may be incorporated into the flexible diffuser material 46. As the top portions 42a and 42b are folded down onto bottom portion 44 back to the closed position, the arcuate support rods 47 collapse in an accordion fashion to allow themselves and the flexible diffuser material 46 to return to the closed position within bottom portion 44. The flexible diffuser material 46 may be adapted to present a rounded or ovoid shape, depending upon the combined geometry of the flexible diffuser material 46 and the arcuate support rods 47.
The arcuate support rods 47 may be of any appropriate rigid or flexible and resilient material, such as wire, plastic, or similar material, that is adapted to be repeatedly moved between the deployed and closed position as shown. It may be preferred to use materials that may be bent and/or twisted to allow the lighting device to rebound from incidental contact when in the deployed position, in accordance with the described action and function.
In this embodiment, the light and all components are protected inside a solid shell. The diffuser material opens to form a balloon shape, similar to a soft convertible top for an automobile. When stored, the container case protects the diffuser material. This embodiment may use either a nested hard shell or flexible soft shell diffuser material.
The light(s) contained in the container 41 may be powered by an on-board battery or rechargeable battery, or a retractable power cord 48, or both.
The rigid or resilient diffuser portions 56 are expanded from their nested contained position to the deployed position, and held in that position, by action of an interference fit that maintains them in the fixed open position which may be attained (and released) by hand force. The rigid or resilient diffuser portions 56 may be folded down into bottom portion 54 to return it back to the closed position. The rigid or resilient diffuser portions 56 may be adapted to present a rounded or ovoid shape, depending upon the combined geometry of the rigid or resilient diffuser portions 56 and the bottom portion 54.
The rigid or resilient diffuser portions 56 typically will be made by plastic self-shaping materials having a translucent diffusive character, such as arcuate-shaped, frosted plastic panels.
The light(s) contained in the container 51 may be powered by an on-board battery or rechargeable battery, or a retractable power cord 58, or both.
This embodiment features a hard shell diffuser that is more durable than fabric diffusers. The layered “petals” 56 retract into housing for transportation or storage, offering a relatively low profile design.
The flexible diffuser material 66 is expanded from its contained position in tubular portion 64b to the deployed position, and held in that position, by umbrella-action support rod(s) 67 that uncoil(s) and expand(s) as top portion 62 is twisted with respect to bottom portion 64. The umbrella-action support rod(s) 67 may be attached to or may be incorporated into the flexible diffuser material 66. As the top portion 62 is slid or twisted downward with respect to bottom portion 64 back to the closed position, the umbrella-action support rod(s) 67 collapse to allow the umbrella-action support rod(s) 67 and the flexible diffuser material 66 to be enclosed within the container. The flexible diffuser material 66 may be adapted to present a rounded or ovoid shape, depending upon the combined geometry of the flexible diffuser material 66 and the umbrella-action support rod(s) 67.
The umbrella-action support rod(s) 67 may be of any appropriate flexible and resilient material capable of acting in an umbrella-action fashion, such as jointed wire, plastic, or similar material, that is adapted to be repeatedly flexed in accordance with the described umbrella-action and function.
The light(s) contained in the container 61 may be powered by an on-board battery or rechargeable battery, or a retractable power cord 68, or both.
The umbrella-like mechanism may be stored in the device's center post and the reversible vertical motion exposes the diffuser and activates the mechanism. The deployed diffuser material may be open on the bottom that may aid in cooling the device.
The flexible diffuser material 76 is expanded from its contained position to the deployed position, and held in that position, by air pressure and or the action of optional air pockets 77 that unfold and expand as top portion 72 is twisted or raised with respect to bottom portion 74. In design option A, the optional air pockets 77 may be attached to or may be incorporated into the flexible diffuser material 76 as shown for additional shaping rigidity. In design option B, a rigid portion 74c is transparent and serves as a backing for the flexible diffuser material 76 that expands and contracts with the aid of air pockets 77b as shown.
As the top portion 72 is slid or twisted downward with respect to bottom portion 74 back to the closed position, the optional air pockets 77 collapse to allow the flexible diffuser material 76 to be enclosed within the container. The flexible diffuser material 76 may be adapted to present a rounded or ovoid shape, depending upon the combined geometry of the flexible diffuser material 76 and the rigid portion 74c, where provided.
The flexible diffuser material 76 and optional air pockets 77b may be of any appropriate flexible and resilient material capable of acting in a balloon-like fashion or expansive fashion from a compressed state, such as using small arcuate sections as shown in option A, of semi-circular sections as in option B, which is adapted to be repeatedly flexed in accordance with the described balloon-like fashion or expansive fashion and function.
The light(s) contained in the container 71 may be powered by an on-board battery or rechargeable battery, or a retractable power cord 78, or both.
Inflatable variations of the present invention may also be adapted to minimize air volume and/or isolate light source from inflation. Inflation/deflation may be integrated into open/close mechanism, such as thorough the use of an air pump mechanism or a switched fan unit.
The flexible support bands 87 may be of any appropriate flexible and resilient material, such as rubber or similar material, which is adapted to be repeatedly bent and/or twisted in accordance with the described action and function.
The light(s) contained in the container 81 may be powered by an on-board battery or rechargeable battery, or a retractable power cord 88, or both.
In this embodiment, tension of cable creates rigid tube design, while slacking allows the support tubes to collapse. The open/close mechanism may be used to activate the tension/slack mechanism.
The flexible diffuser material 96 is expanded from its contained position to the deployed position, and held in that position, by flexible support rod(s) 97 that flex outwardly and expand as top portion 92 is raised with respect to bottom portion 94, such as along the directional arrow shown in the Figure. The flexible support rod(s) 97 reach their maximum deployment extent and may be limited such as by the interfering action of end knobs 97b. The flexible support rod(s) 97 may supplement or replace air pressure to deploy and support the flexible diffuser material 96. The expanding action support rod(s) 97 may be attached to or may be incorporated into the flexible diffuser material 96. As the top portion 92 is moved downward with respect to bottom portion 94 back to the closed position, the expanding action support rod(s) 97 collapse, such as along provided grooves or slots 97a to allow the expanding action support rod(s) 97 and the flexible diffuser material 96 to be enclosed within the container.
The flexible diffuser material 96 may be expanded from its contained position to the deployed position, and held in that position, by contained or active air pressure from a fan or pump. As the top portion 92 is moved downward with respect to bottom portion 94 back to the closed position, the air pressure may be released such as through exhaust valves or reverse action of the provided fan to collapse the flexible diffuser material 96 so that it may be enclosed within the container. The flexible diffuser material 96 may be adapted to present a rounded or ovoid shape, depending upon the combined geometry of the flexible diffuser material 96, and the expanding action support rod(s) 97 where provided.
The expanding action support rod(s) 97 may be of any appropriate flexible and resilient material capable of acting in an expanding fashion, such as jointed wire, plastic, or similar material, that is adapted to be repeatedly flexed in accordance with the described expanding action and function.
The light(s) contained in the container 91 may be powered by an on-board battery or rechargeable battery, or a retractable power cord 98, or both.
The expanding action mechanism may be stored in the device's bottom portion, such as in tubes, slots or grooves, such as 97a, in the bottom portion 94, and the reversible vertical motion exposes the diffuser and activates the mechanism. The deployed diffuser material 96 or the container 91 may be open on the bottom or top with vents that may aid in cooling the device.
In this embodiment, the flexible diffuser supporting members may rest inside lower housing tracks in the bottom portion such that, when the device opens, the members snap into place and form the fully deployed diffuser shape.
The flexible diffuser material 106 is expanded from its contained position to the deployed position, and held in that position, by the moveable extension portions 105 that are internally hinged and reach outwardly and expand as top portion 102 is raised with respect to bottom portion 104, such that the flexible diffuser material 106 is deployed along the directional arrow shown in
The flexible diffuser material 106 also may be expanded from its contained position to the deployed position, and held in that position, by contained or active air pressure from a fan or pump. As the top portion 102 is moved downward with respect to bottom portion 104 back to the closed position, the air pressure may be released such as through exhaust valves or reverse action of the provided fan to collapse the flexible diffuser material 106 so that it may be enclosed within the container. The flexible diffuser material 106 may be adapted to present a rounded or ovoid shape, depending upon the combined geometry of the flexible diffuser material 106, and the expanding moveable extension portions 105.
The expanding moveable extension portions 105 may be of any appropriate flexible and resilient material capable of acting in an expanding fashion, such as jointed wire, plastic, or similar material, that is adapted to be repeatedly flexed in accordance with the described expanding action and function.
The light(s) contained in the container 101 may be powered by an on-board battery or rechargeable battery, or a retractable power cord 108, or both.
The deployed diffuser material 106 or the container 101 may be open on the bottom or top with vents that may aid in cooling the device.
In this embodiment, lifting of top forces top and bottom arms to extend, creating diffuser shape. The tabs on end of arms act to fold diffuser in when closed, while the extension arms protect the diffuser material during storage and transit.
This Figure shows diffuser material in the form of a cylindrical drape 119 that is attached, preferably removably attached, to the top portion 110 and bottom portion 111, preferably along the interior edge. This may be done by use of hook-and-loop strips, such as strip 118, and a corresponding strip, along the interior edge of the top portion 110 and bottom portion 111. Cylindrical drape 119 preferably is sized so as to be substantially taut in the open position, while able to be retracted and stored in the device upon closing. It is preferred that the diffuser material be a material that can withstand heat, and may be replaced if damaged or soiled. An example of such material may be rip-stop nylon (coated or uncoated with plastic), or similar materials such as woven fiberglass, linen or the like (which materials may be acceptable depending upon the desired application).
This Figure also shows the position of CFL bulbs 130 and 131 which may be attached to bottom portion 111 as shown.
This Figure shows the device in a partially closed position, such that the operation of the device may be better appreciated. This view shows the hinged support in a partially collapsed position.
This Figure shows the device in a partially closed position, such that the operation of the device may be better appreciated.
The outer container may also be provided with molded base portions to allow the container to be stood on edge for tight space applications. The outer container may also be provided with or incorporate hooks, clamps, eyelets or other structure or fixtures for hanging or mounting the device upon a pole or other supportive structure, such as those structure or fixtures known and used in the art for hanging such devices. This may also include the inclusion of a molded groove with a mounting screw or other interference fitting arrangement to hold the device onto a pole support. The device may also incorporate a collapsible tripod that may be incorporated into and/or hinged upon the device body.
The preferred embodiment may thus provide one or more of the flowing advantages: (1) 360 degree light output, (2) protection provided to the light diffuser material and lamps by virtue of the durable cover, (3) stability when in use, and ability to be used in low volume and short clearance areas, (4) reduction of glare, harsh shadow and light hot spots, (5) reduction and/or dissipation of heat produced by the lamp(s), and (6) ease of replacement of bulbs and diffuser material (such as through the use of a diffuser material releasably attached to the balance to the device).
The top portion 210 may optionally be provided with retractable hook 218.
This Figure shows diffuser material in the form of a cylindrical drape 219 that is attached, preferably removably attached, to the top portion 210 and bottom portion 211, preferably along the interior edge. This may be done by use of hook-and-loop strips, such as are shown in
While the invention has been described with a certain degree of particularity, it is manifest that many changes may be made in the details of construction and the arrangement of components without departing from the spirit and scope of this disclosure. It is understood that the invention is not limited to the embodiments set forth herein for the purposes of exemplification, but is to be limited only by the scope of the attached claims, including the full range of equivalency to which each element thereof is entitled.
This application is a continuation of U.S. application Ser. No. 12/386,260, filed Apr. 15, 2009, which claims the priority benefit of U.S. Provisional Application Ser. No. 61/207,559, filed Feb. 13, 2009, which are hereby incorporated in their entirety herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12386260 | Apr 2009 | US |
Child | 12979096 | US |