The present disclosure relates generally to dishwasher appliances, and more particularly to a dishwasher appliance with a collapsible or foldable rack.
Dishwasher appliances generally include rack assemblies for positioning various articles for cleaning within a wash chamber. One or more devices such as nozzles or spray assemblies may be included at various locations relative to the rack assemblies for purposes of delivering fluids as part of the cleaning process. During the cleaning cycle, the rack assemblies can support and position the articles while also having openings that allow fluid to pass through to the articles. Factors such as the velocity of the fluid, orientation of the fluid spray or stream relative to the articles, the shape and density of the articles in the rack assemblies, and others can impact the effectiveness of the cleaning cycle.
One or more rack assemblies may be used in dishwasher appliances for user convenience. Multiple rack assemblies on multiple levels within dishwasher appliances may allow users to place articles of differing heights and sizes in optimal positions to allow for proper cleaning of the articles. Some dishwasher appliances may include one or more baskets which may also be provided for holding articles, particularly smaller or for more narrow articles such as silverware. Additionally, the user may have the option of e.g., placing articles such as silverware within a basket on a lower rack assembly or placing the silverware directly (without the basket) onto an upper rack assembly specially configured for the receipt of such articles.
The positioning of articles within a dishwasher appliance can affect the fluid dynamics to which the articles are exposed during the cleaning process. For example, articles placed in a lower rack assembly may be subjected to different spray assemblies with different spray patterns, velocities, and spray duration than articles placed in a higher rack assembly. Additionally, the use of multiple racks, such as an upper rack assembly, may limit the size of articles that fit in each rack of the dishwasher appliance. The size of articles that may be placed in a middle rack assembly, for example, may be limited by the addition of an upper rack positioned above the middle rack in the wash chamber. The placing articles of an otherwise inordinately large size in, e.g., a particular rack assembly may limit or inhibit spray assemblies such that a washing cycle may be limited or unable to perform the intended function of cleaning articles within the wash chamber. In some instances, inappropriately large articles may block nozzles and/or spray assemblies, which may prevent the nozzles and/or spray assemblies from reaching at least some articles in the wash tub.
Some dishwasher appliances may further have an upper rack assembly that is partially or totally removable. Such upper rack assembly may be configured for the receipt of e.g., silverware or other small articles. The upper rack assembly may be equipped for user removal from the dishwasher appliance to allow for larger articles to be washed in lower rack assemblies.
However, some users may find removal of an upper rack assembly to be inconvenient. Placing the upper rack assembly outside of the dishwasher appliance during the cleaning cycle may clutter or take up an undesirable amount of additional space outside the dishwasher appliance while the cleaning cycle completes. Such removable rack assemblies may further be prone to part failure, as some removable rack assemblies may require additional parts in comparison with non-removable rack assemblies, the additional parts may result in more opportunities for part failure, repairs, or periodic replacement of the removable rack assemblies.
Accordingly, a dishwasher appliance with an upper rack assembly having the ability to adjust to allow larger articles to be placed in a rack assembly below the upper rack assembly would be useful. For example, a dishwasher appliance having an upper rack assembly having the ability to be moved within the dishwasher appliance to allow for larger articles to be placed below it, without requiring the upper rack assembly to be removed from the dishwasher appliance's wash chamber would be beneficial. A dishwasher appliance configured to also accomplish this task with relatively few or simple parts comprising the rack assembly that had these capabilities would also be desirable.
Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In one exemplary embodiment, a dishwasher appliance is provided. The dishwasher appliance includes a tub defining a wash chamber for receipt of articles for washing, at least one rack assembly slidably positioned within the wash chamber and configured for the receipt of articles for washing, at least one spray assembly positioned in the wash chamber near the at least one rack assembly and configured to direct wash fluids at the at least one rack assembly, and an upper rack assembly located above the at least one rack assembly, the upper rack assembly selectively movable along a transverse direction in and out of the wash chamber. The upper rack assembly includes a plurality of collapsible panels, each panel extending longitudinally along a lateral direction of the dishwasher appliance between opposing ends, and each panel having a pair of opposing longitudinal sides. Along the transverse direction, adjacent panels of the dishwasher appliance integrally form a pivotable connection at the opposing longitudinal sides between adjacent panels that allows adjacent panels to fold towards each other such that the upper rack assembly may be selectively moved between a collapsed position or an extended position along the transverse direction by movement of the plurality of collapsible panels towards or away from each other, respectively. During the movement, the plurality of panels remains within a plane that includes the lateral direction and transverse direction.
In another exemplary embodiment, a dishwasher appliance is provided. The dishwasher appliance includes a tub defining a wash chamber for receipt of articles for washing, a first rack assembly slidably positioned within the wash chamber, a first spray assembly positioned in the wash chamber and configured to direct wash fluids at the first rack assembly, a second rack assembly slidably positioned in the wash chamber above the first rack assembly, a second spray assembly positioned in the wash chamber and configured to direct wash fluids at the second rack assembly, a third rack assembly slidably positioned in the wash chamber above the second rack assembly, and a third spray assembly positioned over the third rack assembly and configured to direct wash fluid at articles located in the third rack assembly. The third rack assembly includes a plurality of panels, each panel extending longitudinally along a lateral direction of the dishwasher appliance between opposing ends, each panel having a pair of opposing longitudinal sides. Adjacent panels along a transverse direction of the dishwasher appliance include a pivotable connection at the opposing longitudinal sides between adjacent panels that allows adjacent panels to fold towards each other such that the third rack assembly may be selectively collapsed or extended along the transverse direction by movement of the plurality of panels towards or away from each other, respectively. During the movement, the plurality of panels remains within a plane that includes the lateral and transverse directions.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Use of the same of similar reference numerals in the figures denotes the same or similar features unless the context indicates otherwise.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the terms “includes” and “including” are intended to be inclusive in a manner similar to the term “comprising.” Similarly, the term “or” is generally intended to be inclusive (i.e., “A or B” is intended to mean “A or B or both”). Approximating language, as used herein throughout the specification and claims, is applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately,” and “substantially,” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. For example, the approximating language may refer to being within a 10 percent margin.
As used herein, the term “article” may refer to, but need not be limited to dishes, pots, pans, silverware, and other cooking utensils and items that can be cleaned in a dishwashing appliance. The term “wash cycle” is intended to refer to one or more periods of time during which a dishwashing appliance operates while containing the articles to be washed and uses a detergent and water, preferably with agitation, to e.g., remove soil particles including food and other undesirable elements from the articles. The term “rinse cycle” is intended to refer to one or more periods of time during which the dishwashing appliance operates to remove residual soil, detergents, and other undesirable elements that were retained by the articles after completion of the wash cycle. The term “drain cycle” is intended to refer to one or more periods of time during which the dishwashing appliance operates to discharge soiled water from the dishwashing appliance. The term “cleaning cycle” is intended to refer to one or more periods of time that may include a wash cycle, rinse cycle, and/or a drain cycle. The term “wash fluid” refers to a liquid used for washing and/or rinsing the articles and is typically made up of water that may include other additives such as detergent or other treatments.
In this regard, as used herein, the terms “cabinet,” “housing,” and the like are generally intended to refer to an outer frame or support structure for appliance 100, e.g., including any suitable number, type, and configuration of support structures formed from any suitable materials, such as a system of elongated support members, a plurality of interconnected panels, or some combination thereof. It should be appreciated that cabinet 102 does not necessarily require an enclosure and may simply include open structure supporting various elements of appliance 100. By contrast, cabinet 102 may enclose some or all portions of an interior of cabinet 102. It should be appreciated that cabinet 102 may have any suitable size, shape, and configuration while remaining within the scope of the present subject matter.
The tub 104 includes a front opening 114 and a door 116 hinged at its bottom 117 for movement between a normally closed vertical position (shown in
At least one rack assembly is slidably positioned within wash chamber 106 and is configured for the receipt of articles for cleaning. For the exemplary embodiment shown in
Each rack assembly 122, 124, 126 is adapted for movement along transverse direction T between an extended loading position (not shown) in which the rack is substantially positioned outside the wash chamber 106, and a retracted position (shown in
Some or all of the rack assemblies 122, 124, 126 may be fabricated into lattice structures including a plurality of wires or elongated members 130 (for clarity of illustration, not all elongated members making up rack assemblies 122, 124, 126 are shown in
At least one spray assembly is located in wash chamber 106 and is configured to direct wash fluids onto at least on rack assembly for washing articles located therein. For the exemplary embodiment of
The various spray assemblies and manifolds described herein may be part of a fluid distribution system or fluid circulation assembly 150 for circulating water and wash fluid in the tub 104. More specifically, fluid circulation assembly 150 includes a pump 152 for circulating water and wash fluid (e.g., detergent, water, and/or rinse aid) in the tub 104. Pump 152 may be located within sump 138 or within a machinery compartment located below sump 138 of tub 104, as generally recognized in the art. Fluid circulation assembly 150 may include one or more fluid conduits or circulation piping for directing water and/or wash fluid from pump 152 to the various spray assemblies and manifolds. For example, as illustrated in
As illustrated, primary supply conduit 154 is used to supply wash fluid to mid-level spray arm assembly 140 while a secondary supply conduit 92 supplies wash fluid to upper spray assembly 142. Diverter assembly 156 can allow selection between spray assemblies 134 and 140, 142 being supplied with wash fluid. However, it should be appreciated that according to alternative embodiments, any other suitable plumbing configuration may be used to supply wash fluid throughout the various spray manifolds and assemblies described herein.
Each spray assembly 134, 140, 142 or other spray device may include an arrangement of discharge ports or orifices for directing wash fluid received from pump 152 onto dishes or other articles located in wash chamber 106. The arrangement of the discharge ports, also referred to as jets, apertures, or orifices, may provide a rotational force by virtue of wash fluid flowing through the discharge ports. Alternatively, spray assemblies 134, 140, 142 may be motor-driven, or may operate using any other suitable drive mechanism. Spray manifolds and assemblies may also be stationary. Movement of the spray arm assemblies 134 and 140 and the spray from fixed manifolds like spray assembly 142 provides coverage of dishes, silverware, and other dishwasher contents and articles 94 to be cleaned with a washing spray. Other configurations of spray assemblies may be used as well. For example, dishwasher appliance 100 may have additional spray assemblies for cleaning silverware, for scouring casserole dishes, for spraying pots and pans, for cleaning bottles, etc. One skilled in the art will appreciate that the embodiments discussed herein are used for the purpose of explanation only and are not limitations of the present subject matter.
In operation, pump 152 draws wash fluid in from sump 138 and pumps it to a diverter assembly 156, e.g., which is positioned within sump 138 of dishwasher appliance. Diverter assembly 156 may include a diverter disk (not shown) disposed within a diverter chamber (not shown) for selectively distributing the wash fluid to the spray assemblies 134, 140, 142 and/or other spray manifolds or devices. For example, the diverter disk may have a plurality of apertures that are configured to align with one or more outlet ports (not shown) at the top of diverter chamber (not shown). In this manner, the diverter disk may be selectively rotated to provide wash fluid to the desired spray device.
According to an exemplary embodiment, diverter assembly 156 is configured for selectively distributing the flow of wash fluid from pump 152 to various fluid supply conduits, only some of which (e.g., 154) are illustrated in
The dishwasher appliance 100 is further equipped with a controller 160 (
The controller 160 may be positioned in a variety of locations throughout dishwasher appliance 100. In the illustrated embodiment, the controller 160 may be located within a control panel area 162 of door 116. In such an embodiment, input/output (“I/O”) signals may be routed between the control system and various operational components of dishwasher appliance 100 along wiring harnesses that may be routed through the bottom of door 116. Typically, the controller 160 includes a user interface panel/controls 164 (
Dishwasher appliance 100 may also be configured to communicate wirelessly with a cloud-server that may include a database or may be, e.g., a cloud-based data storage system and may also include image recognition and processing capabilities including artificial intelligence as further described below. For example, appliance 100 may communicate with cloud-server over the Internet, and appliance 100 may access via WI-FI®, such as from a WI-FI® access point in a user's home or through a mobile device. Alternatively, dishwasher appliance 100 may be equipped with such image recognition and processing capabilities as part of controller 160 and/or other components onboard appliance 100.
It should be appreciated that the invention is not limited to any particular style, model, or configuration of dishwasher appliance 100. The exemplary embodiment depicted in
In one exemplary aspect, the present invention provides a collapsible or foldable upper rack assembly that can used to support certain articles (e.g., silverware) during cleaning operations. The upper rack assembly can also be conveniently collapsed or folded for storage within the dishwasher in a manner that creates space or room for articles positioned in another rack assembly located below the upper rack assembly. In some embodiments, the upper rack assembly may also be conveniently removable from the appliance. Additional exemplary aspects of the present invention are set forth, or will be apparent from, the description that follows of an exemplary embodiment of an upper rack assembly 126.
With reference to
Upper rack assembly 126 includes a plurality of panels 168 connected together and collapsible or foldable onto each other. Each panel 168 extends longitudinally along a lateral direction L of the dishwasher appliance 100 between opposing ends 174 and 176. Each panel 168 also includes a pair of opposing longitudinal sides 170 and 172 (
Panels 168 are adjacent to each other along transverse direction T and form a pivotable connection 180 at longitudinal sides 170 and 172. For example, adjacent panels 168F and 168B (
More particularly, upper rack assembly 126 may be selectively collapsed (e.g., as depicted by arrows C in
While moving between the extended position (shown in
The collapsibility of upper rack assembly 126 allows for the positioning of larger articles for washing in the rack assembly directly below (along vertical direction V) the upper rack assembly 126. For example, with reference to the extended position shown in
In one exemplary aspect, when in the folded or collapsed position, upper rack assembly 126 may have a width WC along transverse direction T (
A variety of different configurations and constructions may be used to form pivotable connection 180. For the embodiment of
More particularly and with reference to
Each pleat 181 has a thickness PL. In one exemplary embodiment, thickness PL may be about 20 percent or less than the thickness AP of a panel 168. In still another embodiment, an exemplary thickness for panel 168 may be between about 0.05 inches and 0.1 inches while pleat thickness PL may be between 0.010 inches and 0.0020 inches. Other thicknesses for PL and AP may be used in other embodiments of the invention.
For the exemplary embodiment of
As shown in
As mentioned, upper rack assembly 126 may be configured to be removably supported on opposing sides 110 of the appliance 100. Referring to
Referring again to
Opposing hooks 197 and 199 secure upper rack assembly 126 into position on opposing sides 110 while a user is extending or folding panels 168. At the same time, a user may easily remove the entire upper rack assembly 126 if additional space in middle rack assembly 124 is needed beyond the extra space provided by folding or retracting panels 168. Other features may also be used to removably position upper rack assembly 126 on opposing side 110 as will be understood by one of ordinary skill in the art using the teachings disclosed herein.
As depicted in
Upper rack assembly 126 may also include a back section 186 configured to attach upper rack assembly 126 to back support rod 196. As shown, back support rod 196 extends along lateral direction L. One or more clips 198 spaced apart along lateral direction L on back section 186 are used to connect back section 186 to back support rod 196. As such, rod 196 forms an anchor to prevent back section 186 from moving along transverse direction T when panels 168 are unfolded.
As shown in
Guide rails 120 include multiple opposing pairs of slots 113 and 115 that are each configured to receive detents 151. Along each rail 120, slots 113 and 115 are spaced apart along transverse direction T. For example, detents 151 are biased outwardly along lateral direction L and can be removably received into slots 113 to selectively lock upper rack assembly 126 into an extended position. Alternatively, detents 151 can be received into slots 115 to selectively lock or fix the position of upper rack assembly 126 into a collapsed or folded position. Each lock 192 includes a front ramp 123 and a rear ramp 125 on opposing transverse sides of detent 151. In order to release detent 151 from one of the slots, a user can either push or pull upper rack assembly 126 along transverse direction T, which will cause lock 192 to slide out of the slot along either front ramp 123 or rear ramp 125. Lock 192 will be moved in the direction of arrow UL and out of the slot so as to unlock upper rack assembly 126. Upon reaching another slot, lock 192 is biased outwardly and will move in the direction of arrow LO so as to selectively fix or lock upper rack assembly 126 into the user desired position along transverse direction T.
Upper rack assembly 126 may also be configured to be locked into multiple positions in between a collapsed position and an extended position by use of a multiplicity of slots located on the guide rails 120 between slots 113 and 115. Other configurations and equivalent embodiments of the lock 192 may be utilized to hold the upper rack assembly 126 in collapsed, folded, or intermediate positions. Still other configurations and constructions may be utilized to hold the upper rack assembly 126 in an extended position. Although slots are shown along each guide rail 120, in another exemplary embodiment, slots may be positioned along only one guide rail 120 to work with a single lock 192 on the same side of upper rack assembly 126.
In an alternative embodiment, upper rack assembly 126 may be supported directly on opposing side walls 110 of appliance 100. In such case, a pair of opposing drawer slides may be directly attached to side walls 110 of appliance 100 and connected with upper rack assembly 126. For example, rollers 128 may be received into guides provided by the drawer slides and move within the drawer slides to collapse or fold panels 168 as previously described. The drawer slides can be used to move the entire upper rack assembly 126 back and forth along transverse direction T in and out of wash chamber 106 independently of the movement of rollers 128.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5344029 | Oghia | Sep 1994 | A |
5497890 | Clark | Mar 1996 | A |
5857473 | Vanover | Jan 1999 | A |
6170676 | Patadia | Jan 2001 | B1 |
6371642 | Nelson | Apr 2002 | B1 |
7383846 | Curran | Jun 2008 | B2 |
8579120 | Classen | Nov 2013 | B2 |
9107552 | Micek | Aug 2015 | B2 |
9516990 | Graute | Dec 2016 | B2 |
9545185 | Lee | Jan 2017 | B2 |
9730571 | Lee | Aug 2017 | B1 |
9924851 | Kulkarni | Mar 2018 | B2 |
9955850 | Isbilen | May 2018 | B2 |
10729305 | Kopyrin | Aug 2020 | B2 |
20010040141 | Martorella | Nov 2001 | A1 |
20030226580 | Welch | Dec 2003 | A1 |
20060219271 | Feddema | Oct 2006 | A1 |
20060237379 | Yang | Oct 2006 | A1 |
20080149644 | Piacenza | Jun 2008 | A1 |
20080263762 | Burns | Oct 2008 | A1 |
20100078048 | Schessl | Apr 2010 | A1 |
20100314977 | Mallory | Dec 2010 | A1 |
20120222711 | Forst | Sep 2012 | A1 |
20130233353 | Vacca | Sep 2013 | A1 |
20140137907 | Shin | May 2014 | A1 |
20140239784 | Jeong | Aug 2014 | A1 |
20150182104 | Jeong | Jul 2015 | A1 |
20170172378 | Green | Jun 2017 | A1 |
20170332879 | Gerstner | Nov 2017 | A1 |
20210298561 | Feddema | Sep 2021 | A1 |
20220000332 | Kim | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
105496336 | Nov 2018 | CN |
111067459 | Apr 2020 | CN |
2755892 | Jun 1979 | DE |
2554097 | Feb 2013 | EP |
2910170 | Aug 2017 | EP |
2005118103 | May 2005 | JP |
20060095353 | Aug 2006 | KR |
20170021642 | Feb 2017 | KR |
WO-2013098009 | Jul 2013 | WO |
WO2014094897 | Jun 2014 | WO |
WO-2017174565 | Oct 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20230046252 A1 | Feb 2023 | US |