The present disclosure relates to replacement heart valves, and more specifically relates to collapsible heart valves and associated sealing devices and methods.
Prosthetic heart valves may be formed from biological materials such as harvested bovine valves or pericardial tissue. These valves are typically fitted within a stent, which may be inserted into the heart at the annulus of the compromised native valve to replace the native valve. To perform an insertion procedure using a minimally invasive transcatheter technique, it may be necessary to compress the stent to a reduced diameter for loading into a delivery device.
Paravalvular (or perivalvular) leak (PVL) is a relatively rare complication related to the replacement of native heart valves. PVL describes a condition of blood flowing between the implanted valve structure and the cardiac tissue rather than through the implanted valve structure as desired. While most PVLs are hemodynamically non-significant, significant leaks may be problematic and require further intervention.
A heart valve assembly in accordance with the present disclosure includes a heart valve, a self-expandable and collapsible stent, and a sealing member. The stent includes an inflow end and an outflow end, and surrounds and supports the heart valve. The sealing member is connected to the inflow end of the stent and extends around a periphery of the stent. The sealing member is connected to the inflow end of the stent, overlaps a portion of the heart valve, and extends around an outer periphery of the stent.
Another aspect of the present disclosure relates to a heart valve assembly that includes a heart valve, a self-expandable and collapsible stent, and a sealing member. The stent includes an inflow end and an outflow end, and surrounds and supports the heart valve. The sealing member includes a wire mesh having a hollow toroid shape with a central opening and an inward facing surface when in an expanded configuration. The sealing member is collapsible into an elongated configuration for delivery through a vessel. The stent extends into the central opening and is connected to the inward facing surface at a plurality of connection points when in the expanded configuration.
A further aspect of the present disclosure relates to a method of manufacturing a heart valve assembly. The method may include providing a stent and a sealing member that each have a self-expandable and collapsible construction. The stent includes an inflow end and an outflow end and is configured to support a heart valve internally. The method includes positioning the sealing member around an outer periphery of the stent at the inflow end and connecting the stent to the sealing member at a plurality of connection points.
Another method in accordance with the present disclosure relates to a method of deploying a heart valve assembly at an annulus. The method includes providing the valve assembly including a stent surrounding a valve member and a sealing member connected to the stent, and collapsing the valve assembly such that the sealing member and stent are in series.
The foregoing and other features, utilities, and advantages of the invention will be apparent from the following detailed description of the invention with reference to the accompanying drawings.
The present disclosure is directed to implantable heart valve assemblies and support structures, sealing devices, and other features for use with heart valve assemblies. The systems and methods disclosed herein may have particular application to addressing paravalvular leak (PVL) conditions. The heart valve assembly may include a stent positionable at an annulus of a native heart valve (e.g., a native annulus). The stent may be a self-expandable and collapsible stent. A valve and an associated valve cuff may be mounted within the stent. The heart valve assembly may include a sealing member positioned circumferentially around an outer peripheral surface of the stent. The sealing member may at least partially fill openings or gaps between the native annulus and the outside of the stent and/or valve of the heart valve assembly.
The sealing members disclosed herein may comprise a wire mesh. The wire mesh may comprise a shape memory material. The wire mesh may be self-expandable from a compressed, collapsed position, which is maintained during delivery of the heart valve assembly through a vessel to an implantation site, to an expanded position for positioning within a native annulus at the implantation site. The stent may be directly connected to the sealing member. In one embodiment, distal free ends of the stent are connected to an interior surface of the sealing member. The stent may be connected to the sealing member using, for example, welding, a fastener (e.g., clip, bracket, sleeve, hypotube, marker band, suture, etc.), or a hook feature formed in either a portion of the stent or a portion of the sealing member.
The sealing member may have various configurations in the expanded position and in the unexpanded, collapsed position. The sealing member may include an elongate tubular shape when in the unexpanded, collapsed position. One end of the tubular shaped sealing member may be attached to a distal end of the stent. As the sealing member is deployed out of a carrier tube used to deliver the heart valve assembly to the implantation site, an opposite end of the tubular shaped sealing member rolls upon itself to create a toroid-shaped sealing member. A toroid shape is generally a donut-shaped object, such as an O-ring. A toroid-shaped object may have a hollow construction or may be solid.
In another example, the sealing member has a toroid shape when deployed and the stent is connected to the toroid-shaped sealing member along an interior, radially inward facing surface of the sealing member. The toroid-shaped sealing member is collapsible during delivery to the implantation site. The sealing member self-expands from the collapsed position into the toroid shape upon being deployed at the implantation site. The sealing member may invert or flip as part of expanding from the collapsed position to the deployed position. In this sealing member design, no rolling or unrolling of the sealing member is required as part of being deployed.
Referring now to
Valve 16 is positioned internally within stent 12. Stent 12 surrounds and internally supports valve 16. Sealing member 14 is positioned around an exterior, peripheral surface of stent 12. Sealing member 14 may provide an improved interface between heart valve assembly 10 and a native annulus at an implantation site (e.g., at a native valve site located at an outlet of a heart chamber). Sealing member 14 may be positioned at any desired location along a length of stent 12. In
Stent 12 includes inflow and outflow end portions 20, 22 (also referred to as distal and proximal end portions, respectively), interior 24, and a plurality of frame members 26 (also referred to as struts), which form cells. Frame members 26 include free proximal ends 28 and free distal ends 30. Free proximal ends 28 may be coupled together in pairs and free distal ends 30 may be coupled together in pairs.
Stent 12 includes aortic section 32, sinus section 34, and annulus section 36 (see
Sealing member 14 includes wire mesh 40, interior surface 42 (e.g., radially inward facing surface), exterior surface 44 (e.g., radially outward facing surface), hollow interior 46 (see
Individual wires, which include free ends 50 (see
Each connection point 18 may include a fastener. The fasteners at connection points 18 may include, for example, welds, clips, sutures, or another type of direct connection between free ends 50 of the wire members of sealing member 14 and free distal ends 30 of frame members 26 of stent 12 (e.g., using twists, bends, loops, etc.). Connection points 18 may comprise materials that are visible under x-ray, and may be referred to as markers or marker bands.
In the embodiment depicted, stent 12 (and other stents disclosed herein) is connected to sealing member 14 with about 3 to about 15 connection points, and more particularly about 4 to about 8 connection points. The number of connection points 18 may be defined at least in part by the number of frame members 26 or pairs of frame members 26 of stent 12 and a mesh density of sealing member 14.
Wire mesh 40 of sealing member 14 (and other wire meshes disclosed herein) may have a wire density in the range of, for example, about 40 wires to about 200 wires, and more particularly in the range of about 75 wires to about 150 wires. While the term “wire” is used to describe the mesh and individual members of the mesh of the sealing member, other structures such as one or more filaments, threads or strands may be used. Wire mesh 40 may comprise a metal material or may comprise other materials such as, for example, polymer or fabric materials. Wire mesh 40 may comprise a shape memory material such as Nitinol.
Valve 16 shown in
Sealing member 14 may be automatically moveable between a first, collapsed orientation shown in
The bunches of strands may be held together by first applying a marker band around the bunch of strands at a predetermined distance away from distal end 56 when sealing member 14 is in the unrolled orientation of
The bunches of strands are secured to free distal end 30 of stent 12 at connection points 18 (see
Free ends of individual wires at distal end 56 of sealing member 14, when in the orientation shown in
The first orientation depicted in
The second orientation has a generally toroid-shaped structure (also referred to as a donut shaped structure), as shown in
Toroid shaped sealing member 14 shown in
Sealing member 14 may include a shape memory material such as Nitinol. Sealing member 14 may be formed prior to assembly with stent 12 and valve 16. Forming sealing member 14 may include transitioning the generally tubular shape of
Referring to the cross-sectional view of
As shown in
Tip 76 may extend through heart valve assembly 10 and be positioned at a distal end of carrier tube 72 (see
Heart valve assembly 10 is deployed by incrementally withdrawing carrier tube 72 in a proximal direction (away from the heart and toward the operator). Sealing member 14 is first deployed by retracting carrier tube 72 in proximal direction P from a completely advanced position shown in
Further retracting carrier tube 72 in direction P allows stent 12 to continue self-expanding such that outflow end portion 22 is deployed, as shown in
Any of the positions of heart valve assembly 10 shown in
The operator may choose to reposition heart valve assembly 10 relative to a native annulus at an implantation site after partially deploying heart valve assembly 10. Repositioning heart valve assembly 10 typically requires at least partially re-sheathing heart valve assembly 10 within carrier tube 72 to relieve a radially outward force being exerted by heart valve assembly 10 on the native annulus. Relieving the radially outward force permits axial and radial movement of heart valve assembly 10 relative to the native annulus.
Re-sheathing heart valve assembly 10 is initiated by advancing carrier tube 72 in distal direction D (e.g., away from the operator and towards the heart) when the heart valve assembly 10 is at any given partially deployed position. For example, carrier tube 72 may be advanced in distal direction D from the position shown in
After re-sheathing heart valve assembly 10 either completely (e.g., the position shown in
With heart valve assembly 10 deployed at native annulus 86, heart valve assembly 10 may operate to control blood flow from left ventricle 84 into aorta 82. Leaflets 54 of valve 16, which are supported by valve cuff 52 (see
Referring now to
Stent 112 may include inflow and outflow end portions 120, 122, respectively, interior 124, and a plurality of frame members 126 having free proximal and distal ends 128, 130, respectively. Stent 112 includes aortic section 132, sinus section 134, and annulus section 136 (see
Sealing member 114 includes wire mesh 140. Sealing member 114 may include interior surface 142 (e.g., radially inward facing surface—see
Sealing member 114 may be formed by first constructing a tubular shaped wire mesh (not shown). The length of the tubular shaped wire mesh is at least as long as a circumference of stent 112 along its outer surface at inflow end portion 120. One end of the tubular shaped wire mesh is inserted into an open opposite end of the tubular shaped wire mesh to form a toroid shaped structure. The inserted end is connected to the opposite end using, for example, stitching, welding, or fasteners. The tubular shaped wire mesh may initially have a circular cross-sectional shape. The cross-sectional shape of the tubular shaped wire mesh may be flattened into an elliptical or oval cross-sectional shape prior to or after being formed into the toroid shaped object.
Sealing member 114 may be compressible into a collapsed position during delivery to an implantation site and prior to deployment. Sealing member 114 may automatically expand into the uncompressed, expanded position of
Sealing member 114 has hollow interior 146 when in the expanded configuration. Sealing member 114 maintains its rolled up shape and hollow interior when collapsed and compressed during delivery. Sealing member 114 may be arranged in series with stent 112 when in the collapsed and compressed configuration during delivery.
Connection points 118 provide a connection between stent 112 and sealing member 114. Connection points 118 may be positioned at any location along interior surface 142. Connection points 118 may be positioned along an edge of interior surface 142, such as adjacent to a distal end of sealing member 114 (see
Connection points 118 may concurrently connect sealing member 114 to stent 112 and connect valve 116 to stent 112. Alternatively, sealing member 114 is connected to stent 112 with separate connection features from those connection features (e.g., sutures) used to connect valve 116 to stent 112. In some embodiments, sealing member 114 may be directly connected to valve 116 in addition to being connected to stent 112. Valve 116 may be connected to stent 112 at a plurality of locations separate from connection points 18 used for sealing member 114.
Sealing member 114 may be positioned around an outer peripheral surface of stent 112 when heart valve assembly 100 is deployed. Sealing member 114 may be positioned at annulus section 136 of stent 112 at or near inflow end portion 120. In other arrangements, sealing member 114 may be positioned at other positions along a length of stent 112 such as, for example, along sinus section 134 or aortic section 132. Typically, sealing member 114 is positioned at annulus section 136 such that sealing member 114 is aligned with the native annulus (see
Connecting stent 112 to sealing member 114 along interior surface 142 positions sealing member 114 around an outer periphery of stent 112 when heart valve assembly 100 is deployed. Deploying sealing member 114 followed by deploying inflow end portion 120 of stent 112 permits sealing member 114 to self-expand at least partially before stent 112 begins to expand (see
Valve 116 is positioned internally within stent 12 when heart valve assembly 10 is assembled, as shown in
Outflow end portion 122 of stent 112 is connected to deployment member 174. Deployment member 174 includes a plurality of attachment points connected to individual frame members 126 or pairs of frame members 126 of stent 112. The attachment points of deployment member 174 may be carried by a plurality of elongate arms 175, which have sufficient structural rigidity to transfer tensions forces to stent 112 to deploy and re-sheath valve assembly 100 (see
Tip 176 may extend through heart valve assembly 100 and be positioned at an end of carrier tube 172, as shown in
Heart valve assembly 100 is deployed by incrementally withdrawing carrier tube 172 in a proximal direction. Sealing member 114 is first deployed by retracting carrier tube 172 in proximal direction P from a completely advanced position shown in
Further retracting carrier tube 172 in direction P from the position shown in
Further retracting carrier tube 172 in direction P allows stent 112 to further self-expand along its length until stent 112 achieves the expanded position shown in
Any of the positions of heart valve assembly 100 shown in
The operator may choose to reposition heart valve assembly 100 relative to a native annulus at an implantation site after partially deploying heart valve assembly 100. Repositioning heart valve assembly 100 typically requires re-sheathing of heart valve assembly 100 within carrier tube 172 to relieve a radially outward force being exerted by heart valve assembly 100 on the native annulus. Relieving the radially outward force permits axial and radial movement of heart valve assembly 100 relative to the native annulus.
Re-sheathing heart valve assembly 100 is initiated by advancing carrier tube 172 in distal direction D (e.g., away from the operator and toward the heart) when heart valve assembly 100 is at any given partially deployed position. For example, carrier tube 172 may be advanced in distal direction D from the position shown in
After re-sheathing heart valve assembly 100 either completely (e.g., the position shown in
With heart valve assembly 100 deployed at native annulus 86, heart valve assembly 100 may operate to control blood flow between left ventricle 84 into aorta 82. Leaflets 154 of valve 116, which are supported by valve cuff 152, may open in response to pressurized flow of blood out of left ventricle 84 and into aorta 82. Leaflets 154 close after the flow of blood flow B from left ventricle 84 stops thereby preventing back flow of blood from aorta 82 into left ventricle 84. Sealing member 114 provides a sealing interface between native annulus 86 and stent 112 and/or valve 116. Sealing member 114 may conform to a shape of native annulus 86 to fill gaps between heart valve assembly 100 and native annulus 86 that limits PVL. Sealing member 114 may have compressible, deformable properties that aid in conforming to the shape of native annulus 86.
A heart valve assembly in accordance with the present disclosure includes a heart valve, a self-expandable and collapsible stent, and a sealing member. The stent includes an inflow end and an outflow end, and surrounds and supports the heart valve. The sealing member is connected to the inflow end of the stent and extends around a periphery of the stent. The sealing member is connected to the inflow end of the stent, overlaps a portion of the heart valve, and extends around an outer periphery of the stent.
The sealing member may assume an elongated hollow tubular shape when collapsed and constrained. The sealing member may comprise a braided wire mesh. A plurality of wires of the braided wire mesh may be connected to the stent at a single connection point. The sealing member may include a plurality of wires braided to form a mesh, and at least some of the plurality of wires are connected to the stent. The stent may include a plurality of strut members, and the sealing member is connected to distal free ends of the plurality of strut members. The sealing member may be connected to the stent with a plurality of fasteners at spaced apart locations around a circumference of the sealing member. The sealing member may be connected to the stent with a plurality of weld connections. The stent and sealing member may be movable from collapsed positions to expanded positions, and movable from expanded positions to collapsed positions. The heart valve assembly may further include a plurality of marker bands positioned at connection points between the stent and the sealing member. The sealing member rolls up into a pre-formed toroid shape when unconstrained.
Another aspect of the present disclosure relates to a heart valve assembly that includes a heart valve, a self-expandable and collapsible stent, and a sealing member. The stent includes an inflow end and an outflow end, and surrounds and supports the heart valve. The sealing member includes a wire mesh having a hollow toroid shape with a central opening and an inward facing surface when in an expanded configuration. The sealing member is collapsible into an elongated configuration for delivery through a vessel. The stent extends into the central opening and is connected to the inward facing surface at a plurality of connection points when in the expanded configuration.
The sealing member may have an elongated tubular shape having first and second ends when in a collapsed, constrained configuration. The first end may be connected to the stent and the second end may be configured to automatically roll upon itself when the sealing member moves between the collapsed and expanded configurations. The radially inward facing surface may face radially outward when the sealing member is collapsed into the elongated configuration. The wire mesh may include a plurality of braided wire strands intersecting at a plurality of pick points, and the stent is connected to the wire mesh at some of the plurality of the pick points. The sealing member may invert when moving between the expanded configuration and the elongated configuration. The sealing member may be connected to the stent with a suture connection.
A further aspect of the present disclosure relates to a method of manufacturing a heart valve assembly. The method may include providing a stent and a sealing member that each have a self-expandable and collapsible construction. The stent includes an inflow end and an outflow end and is configured to support a heart valve internally. The method includes positioning the sealing member around an outer periphery of the stent at the inflow end, and connecting the stent to the sealing member at a plurality of connection points.
Connecting the stent to the sealing member may include securing with at least one of a suture and a clip. The sealing member may include a wire mesh formed from a plurality of braided wire members, and the method may further include separating out at least some of the plurality of braided wire members and grouping together the separated out wire members to form the plurality of connection points.
Another method in accordance with the present disclosure relates to a method of deploying a heart valve assembly at an annulus. The method includes providing the valve assembly including a stent surrounding a valve member and a sealing member connected to the stent, and collapsing the valve assembly such that the sealing member and stent are in series.
The method may further include positioning the valve assembly within a carrier tube, positioning the carrier tube at the annulus, retracting the carrier tube to expose the heart valve assembly with the sealing member positioned at the annulus, wherein the sealing member transitions from a collapsed position into an expanded position, and forming a seal between the annulus and the stent with the sealing member to limit paravalvular leaking. The sealing member may extend around an outer peripheral surface of the stent in the expanded position. The annulus may include a native aortic valve. The method may include retracting the valve assembly into the carrier tube after advancing the heart valve assembly out of the carrier tube. The method may include providing a delivery assembly configured to move the valve assembly relative to the carrier tube and disconnecting the valve assembly from the delivery assembly after forming the seal.
Forming the sealing member into a toroid shape may include rolling a tubular-shaped piece of wire mesh upon itself about an axis that extends circumferentially around the tubular shaped mesh material. Once the mesh material is rolled up to form the toroid shape, the wire mesh may be heat set. The sealing member may be unrolled for purposes of, for example, being collapsed and held within a carrier tube for delivery of the heart valve assembly to an implantation site. One end of the sealing member may be connected to the stent. Upon being released from the carrier tube, the sealing member may transition from a collapsed position into an expanded position by rolling upon itself until attaining the heat set position. The sealing member may be arranged extending around an outer periphery of the stent when in the expanded position.
As used in this specification and the appended claims, the term “engage” and “engagable” are also used broadly to mean interlock, mesh, or contact between two devices. A “tube” is an elongated device with a passageway. The passageway may be enclosed or open (e.g., a trough). A “lumen” refers to any open space or cavity in a bodily organ, especially in a blood vessel. The words “including” and “having,” as used in the specification, including the claims, have the same meaning as the word “comprising.” The term “distal” refers to the end of the heart valve assembly closest to the heart and a direction away from the operator, and the term “proximal” refers to the end of the heart valve assembly farthest from the heart and a direction toward the operator. The term “inlet end” refers to an end of the heart valve assembly closest to an outlet opening of the heart and which receives blood flow from the heart. An “outlet end” of the heart valve assembly refers to that portion of the heart valve assembly through which blood flows out of the heart valve assembly in a direction away from the heart.
The preceding description has been presented only to illustrate and describe exemplary embodiments of the invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the following claims.
This application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/US2014/042336, filed Jun. 13, 2014, which claims priority to U.S. Provisional Patent Application No. 61/837,063, filed Jun. 19, 2013, the disclosures of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/042336 | 6/13/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/201807 | 12/24/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3657744 | Ersek | Apr 1972 | A |
4275469 | Gabbay | Jun 1981 | A |
4423730 | Gabbay | Jan 1984 | A |
4491986 | Gabbay | Jan 1985 | A |
4759758 | Gabbay | Jul 1988 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5411552 | Andersen et al. | May 1995 | A |
5480423 | Ravenscroft et al. | Jan 1996 | A |
5817126 | Imran | Oct 1998 | A |
5843167 | Dwyer et al. | Dec 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5935163 | Gabbay | Aug 1999 | A |
5961549 | Nguyen et al. | Oct 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
6045576 | Starr et al. | Apr 2000 | A |
6077297 | Robinson et al. | Jun 2000 | A |
6083257 | Taylor et al. | Jul 2000 | A |
6090140 | Gabbay | Jul 2000 | A |
6214036 | Letendre et al. | Apr 2001 | B1 |
6264691 | Gabbay | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6488702 | Besselink | Dec 2002 | B1 |
6517576 | Gabbay | Feb 2003 | B2 |
6533810 | Hankh et al. | Mar 2003 | B2 |
6582464 | Gabbay | Jun 2003 | B2 |
6610088 | Gabbay | Aug 2003 | B1 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6685625 | Gabbay | Feb 2004 | B2 |
6716244 | Klaco | Apr 2004 | B2 |
6719789 | Cox | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6783556 | Gabbay | Aug 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6814746 | Thompson et al. | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6869444 | Gabbay | Mar 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6951573 | Dilling | Oct 2005 | B1 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7025780 | Gabbay | Apr 2006 | B2 |
7137184 | Schreck | Nov 2006 | B2 |
7160322 | Gabbay | Jan 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7247167 | Gabbay | Jul 2007 | B2 |
7267686 | DiMatteo et al. | Sep 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7311730 | Gabbay | Dec 2007 | B2 |
7320704 | Lashinski et al. | Jan 2008 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7374573 | Gabbay | May 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7381219 | Salahieh et al. | Jun 2008 | B2 |
7452371 | Pavcnik et al. | Nov 2008 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7524331 | Birdsall | Apr 2009 | B2 |
7534261 | Friedman | May 2009 | B2 |
RE40816 | Taylor et al. | Jun 2009 | E |
7585321 | Cribier | Sep 2009 | B2 |
7628805 | Spenser et al. | Dec 2009 | B2 |
7682390 | Seguin | Mar 2010 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7731742 | Schlick et al. | Jun 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7780725 | Haug et al. | Aug 2010 | B2 |
7799069 | Bailey et al. | Sep 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7824442 | Salahieh et al. | Nov 2010 | B2 |
7837727 | Goetz et al. | Nov 2010 | B2 |
7846203 | Cribier | Dec 2010 | B2 |
7846204 | Letac et al. | Dec 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7959666 | Salahieh et al. | Jun 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7988724 | Salahieh et al. | Aug 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8016877 | Seguin et al. | Sep 2011 | B2 |
D648854 | Braido | Nov 2011 | S |
8048153 | Salahieh et al. | Nov 2011 | B2 |
8052741 | Bruszewski et al. | Nov 2011 | B2 |
8052749 | Salahieh et al. | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8075611 | Millwee et al. | Dec 2011 | B2 |
D652926 | Braido | Jan 2012 | S |
D652927 | Braido et al. | Jan 2012 | S |
D653341 | Braido et al. | Jan 2012 | S |
D653342 | Braido et al. | Jan 2012 | S |
D653343 | Ness et al. | Jan 2012 | S |
D654169 | Braido | Feb 2012 | S |
D654170 | Braido et al. | Feb 2012 | S |
8137398 | Tuval et al. | Mar 2012 | B2 |
8142497 | Friedman | Mar 2012 | B2 |
D660432 | Braido | May 2012 | S |
D660433 | Braido et al. | May 2012 | S |
D660967 | Braido et al. | May 2012 | S |
8182528 | Salahieh et al. | May 2012 | B2 |
8221493 | Boyle et al. | Jul 2012 | B2 |
8230717 | Matonick | Jul 2012 | B2 |
8231670 | Salahieh et al. | Jul 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8308798 | Pintor et al. | Nov 2012 | B2 |
8313525 | Tuval et al. | Nov 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8323336 | Hill et al. | Dec 2012 | B2 |
8343213 | Salahieh et al. | Jan 2013 | B2 |
8348995 | Tuval et al. | Jan 2013 | B2 |
8348996 | Tuval et al. | Jan 2013 | B2 |
8348998 | Pintor et al. | Jan 2013 | B2 |
8366769 | Huynh et al. | Feb 2013 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8408214 | Spenser | Apr 2013 | B2 |
8414643 | Tuval et al. | Apr 2013 | B2 |
8425593 | Braido et al. | Apr 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8449604 | Moaddeb et al. | May 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8500798 | Rowe et al. | Aug 2013 | B2 |
8568474 | Yeung et al. | Oct 2013 | B2 |
8579962 | Salahieh et al. | Nov 2013 | B2 |
8579966 | Seguin et al. | Nov 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8591575 | Cribier | Nov 2013 | B2 |
8597349 | Alkhatib | Dec 2013 | B2 |
8603159 | Seguin et al. | Dec 2013 | B2 |
8603160 | Salahieh et al. | Dec 2013 | B2 |
8613765 | Bonhoeffer et al. | Dec 2013 | B2 |
8623074 | Ryan | Jan 2014 | B2 |
8652204 | Quill et al. | Feb 2014 | B2 |
8663322 | Keranen | Mar 2014 | B2 |
8668733 | Haug et al. | Mar 2014 | B2 |
8685080 | White | Apr 2014 | B2 |
8728154 | Alkhatib | May 2014 | B2 |
8747459 | Nguyen et al. | Jun 2014 | B2 |
8764820 | Dehdashtian et al. | Jul 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8801776 | House et al. | Aug 2014 | B2 |
8808356 | Braido et al. | Aug 2014 | B2 |
8828078 | Salahieh et al. | Sep 2014 | B2 |
8834563 | Righini | Sep 2014 | B2 |
8840663 | Salahieh et al. | Sep 2014 | B2 |
8876894 | Tuval et al. | Nov 2014 | B2 |
8876895 | Tuval et al. | Nov 2014 | B2 |
8940040 | Shahriari | Jan 2015 | B2 |
8945209 | Bonyuet et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8974523 | Thill et al. | Mar 2015 | B2 |
8974524 | Yeung et al. | Mar 2015 | B2 |
20020036220 | Gabbay | Mar 2002 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030130726 | Thorpe et al. | Jul 2003 | A1 |
20040049262 | Obermiller et al. | Mar 2004 | A1 |
20040093075 | Kuehne | May 2004 | A1 |
20040111111 | Lin | Jun 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050096726 | Sequin et al. | May 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050203605 | Dolan | Sep 2005 | A1 |
20050256566 | Gabbay | Nov 2005 | A1 |
20060008497 | Gabbay | Jan 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060106415 | Gabbay | May 2006 | A1 |
20060122692 | Gilad et al. | Jun 2006 | A1 |
20060142848 | Gabbay | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060167468 | Gabbay | Jul 2006 | A1 |
20060173532 | Flagle et al. | Aug 2006 | A1 |
20060178740 | Stacchino et al. | Aug 2006 | A1 |
20060206202 | Bonhoeffer et al. | Sep 2006 | A1 |
20060241744 | Beith | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259120 | Vongphakdy et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060276813 | Greenberg | Dec 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070027534 | Bergheim et al. | Feb 2007 | A1 |
20070038291 | Case | Feb 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070055358 | Krolik et al. | Mar 2007 | A1 |
20070067029 | Gabbay | Mar 2007 | A1 |
20070073391 | Bourang et al. | Mar 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070100435 | Case et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070162100 | Gabbay | Jul 2007 | A1 |
20070167955 | Arnault De La Menardiere | Jul 2007 | A1 |
20070168013 | Douglas | Jul 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070239271 | Nguyen | Oct 2007 | A1 |
20070244545 | Birdsall et al. | Oct 2007 | A1 |
20070244552 | Salahieh et al. | Oct 2007 | A1 |
20070288087 | Fearnot et al. | Dec 2007 | A1 |
20080021552 | Gabbay | Jan 2008 | A1 |
20080039934 | Styrc | Feb 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082164 | Friedman | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080114452 | Gabbay | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080147182 | Righini et al. | Jun 2008 | A1 |
20080147183 | Styrc | Jun 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080255662 | Stacchino et al. | Oct 2008 | A1 |
20080262602 | Wilk et al. | Oct 2008 | A1 |
20080269879 | Sathe et al. | Oct 2008 | A1 |
20090054975 | del Nido et al. | Feb 2009 | A1 |
20090099653 | Suri et al. | Apr 2009 | A1 |
20090112309 | Jaramillo et al. | Apr 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090276027 | Glynn | Nov 2009 | A1 |
20100004740 | Seguin et al. | Jan 2010 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20100049306 | House et al. | Feb 2010 | A1 |
20100087907 | Lattouf | Apr 2010 | A1 |
20100131055 | Case et al. | May 2010 | A1 |
20100168778 | Braido | Jul 2010 | A1 |
20100168839 | Braido et al. | Jul 2010 | A1 |
20100168844 | Toomes et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100204785 | Alkhatib | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100234940 | Dolan | Sep 2010 | A1 |
20100249911 | Alkhatib | Sep 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100286768 | Alkhatib | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20110029072 | Gabbay | Feb 2011 | A1 |
20110054466 | Rothstein et al. | Mar 2011 | A1 |
20110098800 | Braido et al. | Apr 2011 | A1 |
20110098802 | Braido et al. | Apr 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110172765 | Nguyen et al. | Jul 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110224678 | Gabbay | Sep 2011 | A1 |
20110264206 | Tabor | Oct 2011 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120065728 | Gainor | Mar 2012 | A1 |
20120078347 | Braido et al. | Mar 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120303116 | Gorman, III et al. | Nov 2012 | A1 |
20130018458 | Yohanan et al. | Jan 2013 | A1 |
20130274873 | Delaloye et al. | Oct 2013 | A1 |
20140121763 | Duffy et al. | May 2014 | A1 |
20140155997 | Braido | Jun 2014 | A1 |
20140214159 | Vidlund et al. | Jul 2014 | A1 |
20140228946 | Chau et al. | Aug 2014 | A1 |
20140277423 | Alkhatib | Sep 2014 | A1 |
20140303719 | Cox et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140343671 | Yohanan et al. | Nov 2014 | A1 |
20140350668 | Delaloye et al. | Nov 2014 | A1 |
20140350669 | Gillespie et al. | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
19857887 | May 2005 | DE |
10121210 | Nov 2005 | DE |
202008009610 | Dec 2008 | DE |
0850607 | Jul 1998 | EP |
1000590 | May 2000 | EP |
1129744 | Sep 2001 | EP |
1157673 | Nov 2001 | EP |
1584306 | Oct 2005 | EP |
1598031 | Nov 2005 | EP |
1360942 | Dec 2005 | EP |
1926455 | Jun 2008 | EP |
2537487 | Dec 2012 | EP |
2850008 | Jul 2004 | FR |
2847800 | Oct 2005 | FR |
9117720 | Nov 1991 | WO |
9716133 | May 1997 | WO |
9832412 | Jul 1998 | WO |
9913801 | Mar 1999 | WO |
01028459 | Apr 2001 | WO |
0149213 | Jul 2001 | WO |
01054625 | Aug 2001 | WO |
01056500 | Aug 2001 | WO |
01076510 | Oct 2001 | WO |
0236048 | May 2002 | WO |
0247575 | Jun 2002 | WO |
03047468 | Jun 2003 | WO |
06073626 | Jul 2006 | WO |
07071436 | Jun 2007 | WO |
08070797 | Jun 2008 | WO |
10008548 | Jan 2010 | WO |
10008549 | Jan 2010 | WO |
10051025 | May 2010 | WO |
10087975 | Aug 2010 | WO |
10096176 | Aug 2010 | WO |
10098857 | Sep 2010 | WO |
2012048035 | Apr 2012 | WO |
2012178115 | Dec 2012 | WO |
WO 2012178115 | Dec 2012 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US2014/042336 dated Sep. 30, 2014. |
Ruiz, Carlos, Overview of PRE-CE Mark Transcatheter Aortic Valve Technologies, Euro PCR, 2010. |
Quaden, Rene et al.,Percutaneous aortic valve replacement: resection before implantation, 836-840, European J. of Cardio-thoracic Surgery, 27 (2005). |
U.S. Appl. No. 29/375,243, filed Sep. 20, 2010. |
U.S. Appl. No. 29/375,260, filed Sep. 20, 2010. |
Knudsen, L.L., et al.Catheter-implanted prosthetic heart valves,The International Journal of Artificial Organs, vol. 16, No. 5 1993, pp. 253-262. |
Moazami, Nader, et al.,Transluminal Aortic Valve Placement, ASAIO Journal, 1996; 42:M381-M385. |
Andersen, Henning Rud, Transluminal Catheter Implanted Prosthetic Heart Valves, International Journal of Angiology 7:102-106 (1998). |
Andersen, H. R., et al., Transluminal implantation of artificial heart valves, European Heart Journal (1992) 13, 704-708. |
Zegdi, Rachid, MD, PhD et al., Is It Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent?, 579-584, J. of the American College of Cardiology, vol. 51, No. 5, Feb. 5, 2008. |
Rohde, I., Masch, J.-M., Theisen-Kunde, D., Marczynski-Bühlow, M., Bombien Quaden, R., Lutter, G. and Brinkmann, R. (2015), Resection of Calcified Aortic Heart Leaflets In Vitro by Q-Switched 2 μm Microsecond Laser Radiation. Journal of Cardiac Surgery, 30: 157-162. doi: 10.1111/jocs.12481. |
Muñoz, Daniel Rodriguez, Carla Lázaro Rivera, and José Luis Zamorano Gómez. “Guidance of treatment of perivalvular prosthetic leaks.” Current cardiology reports 16.1 (2014): 1-6. |
Gössl, Mario, and Charanjit S. Rihal. “Percutaneous treatment of aortic and mitral valve paravalvular regurgitation.” Current cardiology reports 15.8 (2013): 1-8. |
Swiatkiewicz, Iwona, et al. “Percutaneous closure of mitral perivalvular leak.” Kardiologia polska 67.7 (2009): 762. |
De Cicco, Giuseppe, et al. “Aortic valve periprosthetic leakage: anatomic observations and surgical results.” The Annals of thoracic surgery 79.5 (2005): 1480-1485. |
Heat Advisor, “Heart repairs without surgery. Minimally invasive procedures aim to correct valve leakage”, Sep. 2004, PubMed ID 15586429. |
Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks, Houlihan et al., Journal of the American College of Cardiology, vol. 20, No. 6, pp. 1371-1377, (1992). |
Buellesfeld et al., Treatment of paravalvular leaks through inverventional techniques; Department of Cardiology, Ben University Hospital 2011. |
Number | Date | Country | |
---|---|---|---|
20160143732 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
61837063 | Jun 2013 | US |