The present disclosure relates generally to mobility assistance devices. More specifically, the present disclosure relates to walkers to assist individuals in standing or walking.
The embodiments disclosed herein will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. These drawings depict only typical embodiments, which will be described with additional specificity and detail through use of the accompanying drawings in which:
It will be readily understood that the components of the embodiments as generally described and illustrated in the Figures herein could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the Figures, is not intended to limit the scope of the disclosure, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
Referring generally and collectively to
The walking device 110 includes four support legs that extend to the ground from adjacent the handles 114. Two forward-facing handle legs 116 are located in a forward position, which is in a location typically in front of the user in a direction that the user may wish to walk. The handle legs 116 can be coupled to, or integrated with the handles 114. The handles 114, which are configured to be grasped by a user, may extend at an angle from the handle legs 116 rearward toward the anticipated position of the user. The walking device 110 also includes rearward-facing support legs 118, which may be pivotably coupled to and extend at an angle from the handle legs 116 adjacent the position of the handles 114. The rearward-facing support legs 118 may extend from the handle legs 116 rearward towards the anticipated position of the user and downward toward the ground. The distal ends of the rearward-facing support legs 118 may contact the ground at a position nearly behind where a user of the walking device would be positioned, to thereby provide greater stability.
The walking device 110 may optionally include wheels 112 or rollers coupled to the distal end of the handle legs 116 to aid in the mobility of the walking device 110. Additionally, brakes may optionally be included. Tips 113 may be coupled to the distal end of the rearward-facing support legs 118. As can be appreciated, wheels can also be coupled to the rearward-facing support legs 118 in place of the tips 113. Moreover, tips can be coupled to the handle legs 116 in place of the wheels 112. Each of the legs 116, 118 may include a height adjustment mechanism 111 to allow a user to increase the length of the legs 116, 118 and thereby adjust the height of the handles 114. A height adjustment mechanism, according to one embodiment, is shown in
The walking device 110 may further include cross bars 120 that are each pivotably coupled to a first location 122 on a handle leg 116 at a position adjacent the handle 114, and also pivotably coupled to a second location 124 on the other handle leg 116 at a position spaced apart from the handle 114 and towards the ground. In one embodiment, the cross bars 120, while pivotably coupled to the handle leg 116 adjacent the handles 114, may be restricted from moving along the longitudinal length of the handle leg 116 at the first location 122. However, the cross bars 120 may also be slidably and pivotably coupled to the handle legs 116 at the second location 124, such that the joints 126 that pivotably couple the cross bars 120 to the handle legs 116 may move along the longitudinal length of the handle legs 116, towards the ground, as the walking device 110 is transitioned to the storage configuration. The cross bars 120 may also be pivotably coupled to each other at a center point 128 between the handle legs 116, i.e., where the cross bars 120 intersect.
In one embodiment, the walking device 110 also includes stabilizing bars 130, which extend between the handle legs 116 and the rearward-facing support legs 118. The joint 132 that couples a particular stabilizing bar 130 to its respective rearward-facing support leg 118 allows for pivoting movement of the stabilizing bar 130, but restricts longitudinal movement of the joint 132 along the longitudinal length of the rearward-facing support leg 118. The joint 126 that couples a particular stabilizing bar 130 to its respective handle leg 116 may allow for pivoting movement of the stabilizing bar 130 and longitudinal sliding movement of the joint 126 along the longitudinal length of the handle leg 116. In one embodiment, the joint 126 coupling the stabilizing bar 130 to the handle leg 116 is at the same longitudinal position along the handle leg 116 as the joint 126 at the second location 124 where the cross bar 120 is coupled to the handle leg 116. In another embodiment, there may be two separate joints at different longitudinal positions relative to each other along the handle leg 116.
The walking device 110 may also include triangulation support bars 134 that are each coupled to a cross bar 120 and a rearward-facing support leg 118. The triangulation support bars 134 provide stability to the walking device 110, and may optionally lock the walking device 110 in the operative configuration. In one embodiment, each triangulation support bar 134 is rotatably coupled to its respective cross bar 120, but may be fixed and not slidably coupled to the cross bar 120. A joint 140 couples the triangulation support bar 134 to the cross bar 120. The joint 140 may allow pivoting in two axes of rotation. The joint 140 may comprise a sleeve configured to rotate about the longitudinal axis of the cross member 120 and may also allow the triangulation support bar 134 to pivot relative to the sleeve. Furthermore, according to one exemplary embodiment, each triangulation support bar 134 is coupled to its respective rearward-facing support leg 118 through a locking joint 136 that permits linear movement of the triangulation support bar 134 through the locking joint 136. The triangulation support bar 134 moves linearly through the locking joint 136 as the walking device 110 is transitioned between the operative configuration and the storage configuration. Each locking joint 136 is rotatably coupled to a rearward-facing support leg 118.
When a user desires to place the walking device 110 into the compact, storage configuration, the locking joints 136 are disengaged and the handles 114 are moved toward each other, while simultaneously the rearward-facing support legs 118 move toward the handle legs 116. The arrangement of the various joints may help to collapse the walking device 110 into the storage configuration. The joints 138 adjacent the handle 114 (at the first location 122), pivotably coupling the cross bar 120 to the handle leg 116 and the rearward-facing support leg 118 to the handle leg 116, remain stationary. Stated differently, the joints 138 do not slide along the longitudinal length of the handle legs 116. The pivoting joint 132 coupling the stabilizing bar 130 to the rearward-facing support leg 118 also remains stationary along the longitudinal length of the rearward-facing support leg 118. The joint 140 coupling the triangulation bar 134 to the cross bar 120 and the joint 136 coupling the triangulation bar to the rearward-facing support leg 118 also may remain stationary and not permit slidable movement along the longitudinal length of the cross bar 120 or rearward-facing support leg 118.
However, the pivoting joints 126 coupling the cross bar 120 to the handle leg 116 (at the second location 124) and the stabilizing bar 130 to the handle leg 116 are capable of sliding along the longitudinal length of the handle leg 116. When the user moves the handles 114 toward each other, and thereby moves the handle legs 116 toward each other, the stabilizing bars 130 and the triangulation bars 134 move to a more vertical orientation in the storage configuration, instead of a more horizontal orientation of the operative configuration. The cross bars 120 also move to a more vertical orientation, causing the pivoting joints 126 to slide downward along the longitudinal length of the handle leg 116 to a third location 125. The rearward-facing support legs 118 are in turn pulled toward the handle legs 116. The arrangement of the handle legs 116 and the rearward-facing support legs 118 when all pulled together allows for the compactability of the walking device 110 in the storage configuration, as best shown in
The stationary pivot component 154 may be configured to be secured to a leg of a walking device, such as a handle leg 116 of the walking device 110 of
The telescoping tube 158 may be at least partially received within and slidably moveable relative to a shaft comprising the handle leg 116. A proximal end of the telescoping tube 158 is inserted into the handle leg 116 and is slidably movable along a longitudinal axis of the handle leg 116. As the telescoping tube 158 is moved in a direction toward the handle leg 116, i.e., inserted further within the handle leg 116, the length is shortened, thereby reducing the height of the handle leg 116. As the telescoping tube 158 is extended away from the handle leg 116, i.e. partially withdrawn from the handle leg 116, the height of the handle leg 116 increases. A distal end of the telescoping tube may be coupled to a tip 160. The tip 160 may be a foot-style tip, as shown in
The telescoping tube further comprises a plurality of aligned holes 162 that are spaced along a length of a portion of the telescoping tube 158. As best shown in
The button pivoting component 156 is adapted to releasably secure the telescoping tube 158 relative to the leg 116. With reference to
A user can depress the button portion 170 to disengage the pin 168, allowing the telescoping tube 158 to slidably move with respect to the leg 116. With the pin 168 disengaged, the user can increase, or decrease, the height of the leg 116 by further extending, or inserting, the telescoping tube 158 relative to the leg 116, respectively. The biasing member 172 biases the button portion 170 of button pivoting component 156 toward an undepressed position and, correspondingly, the pin 168 toward engagement of the aligned holes. Stated differently, the biasing member 172 biases the button pivoting component 156 toward securement of the telescoping tube 158 relative to the leg 116.
In the illustrated embodiment, the button portion 170 of the button pivoting component 156 is positioned below, or distal to, the pin 168. Accordingly, the pin extends through an opening in the leg 116 to engage the holes 162 in the telescoping tube. As can be appreciated, in another embodiment, the button portion 170 of the button pivoting component 156 may be positioned distal to the button portion 170. Accordingly the pin 168 can engage the holes 162 in the telescoping tube 158 without extending through an opening in the leg 116.
The pivot support 242 may include two pivoting bars 246, each coupled to the rearward-facing support legs 218 at the joint 244, and also coupled to a latch mechanism 248 disposed between the rearward-facing support legs 218. When the walking device 210 is in the operative configuration, the two pivoting bars 246 are in a substantially linear arrangement, and secured in the linear arrangement by the latch mechanism 248. When transitioning the walking device 210 to the storage configuration, a user pulls on a release tab 250, which unlocks the latch mechanism 248. Continued pulling of the latch mechanism 248 in an upward direction allows the entire walker device 210 to collapse, as described herein.
The triangulation support bars 334 are coupled to rearward-facing support legs 318 of the walking device 310 by the slidably moveable joints 336. The slidably moveable joints 336 can slide along a portion of the longitudinal length of the rearward-facing support legs 318 as the walking device 310 is transitioned between the operative configuration and the storage configuration. The slidably moveable joints 336 may comprise a locking mechanism to secure the position of the joints 336 relative to the rearward-facing support legs 318. The locking mechanism may be activated by a simple button, lever, latch, etc., to allow quick and simple locking and unlocking of the joint relative to the rearward-facing support legs 318. The slidably moveable joints 336 may also facilitate pivoting in two directions of rotation. For example, the joints 336 may allow the triangulation support bars 334 to rotate about their longitudinal axis and also to pivot relative to the longitudinal axis of the rearward-facing support legs 318.
In the operative configuration, the slidably movable joints 336 coupling the triangulation support bars 334 to the rearward-facing support legs 318 are positioned at a first location 335 along the rearward-facing support legs 318, as shown in
Movement of the slidably moveable joints 336 upward along the rearward-facing support legs 318, in combination with movement of the rearward-facing support legs 318 toward each other and/or toward the handle legs 316, also causes the triangulation support bars 334 to pivot relative to the cross bars 320. The triangulation support bars 334 are coupled to cross bars 320 with joints 340 at a fixed position along the longitudinal length of the cross bars 320, such that the joints 340 do not move along the longitudinal length of the cross bars 320. The joints 340 may enable pivoting about one axis of rotation, as shown, allowing the triangulation support bars 334 to pivot relative to the cross bars 320. In another embodiment, the joints 340 may allow pivoting about a plurality of axes of rotation. The joints 336, 340 facilitate movement of the triangulation support bars 336 to transition to the vertical orientation of the storage configuration from the more horizontal orientation of the operative configuration.
While specific embodiments of collapsible walking devices have been illustrated and described, it is to be understood that the disclosure provided is not limited to the precise configuration and components disclosed. Various modifications, changes, and variations apparent to those of skill in the art may be made in the arrangement, operation, and details of the methods and systems disclosed, with the aid of the present disclosure.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the present disclosure to its fullest extent. The examples and embodiments disclosed herein are to be construed as merely illustrative and exemplary and not a limitation of the scope of the present disclosure in any way.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/040216 | 4/10/2009 | WO | 00 | 10/7/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/126892 | 10/15/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1303416 | Tidyman | May 1919 | A |
2734554 | Ries | Feb 1956 | A |
2960148 | Murcott | Nov 1960 | A |
4046374 | Breyley | Sep 1977 | A |
4481965 | Watkins | Nov 1984 | A |
4643211 | Morris et al. | Feb 1987 | A |
4729395 | Adamson | Mar 1988 | A |
5348336 | Fernie et al. | Sep 1994 | A |
5417472 | Elvinsson | May 1995 | A |
5499856 | Sorrell et al. | Mar 1996 | A |
5605169 | Light | Feb 1997 | A |
5687984 | Samuel | Nov 1997 | A |
5816593 | Che | Oct 1998 | A |
6032914 | Bastida | Mar 2000 | A |
6347777 | Webber et al. | Feb 2002 | B1 |
6386575 | Turner | May 2002 | B1 |
7306246 | Gale | Dec 2007 | B2 |
20070012346 | Choi | Jan 2007 | A1 |
20070163633 | Gale | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
1047675 | Feb 1989 | JP |
1262252 | Oct 1989 | JP |
1262253 | Oct 1989 | JP |
1297371 | Nov 1989 | JP |
1297372 | Nov 1989 | JP |
3186474 | Aug 1991 | JP |
7024025 | Jan 1995 | JP |
9202239 | Aug 1997 | JP |
11217076 | Aug 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20110030749 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
61051223 | May 2008 | US | |
61043953 | Apr 2008 | US |