It is well-known that visual handicap is a reality for thousands of citizens throughout the world. On Sep. 14, 2001, the guiding principles proposed by the Inter-American Convention came into force in Brazil, determining the Elimination of All Forms of Discrimination Against Handicapped People (Legislative Decree No. 198). However, although the Brazilian Constitution guarantees people with special learning needs the right to enjoy all the rights of the common citizen, the visually handicapped have found little opportunity even when it has been a question of their basic education.
With respect to basic and intermediate instruction, these citizens can count on very few specialized centers that will guarantee them a formal education.
There are countless institutions that, even while struggling to implement quality instruction, have neither the resources nor the specialized teaching tools to meet the general and specific requirements of these students, most of which have not been able to engage in inclusive activities.
In higher education, this situation is even more serious, for in spite of the “democratic” selection process, which also offers opportunities to those with special educational needs to enter colleges and universities, access to one of these institutions is a nearly impossible dream for many of these students, whose greatest struggle is still for a basic education of quality. Even more surprising is the fact that the visually handicapped enter a university and do not find what they require for their professional training, such as bibliographies in Braille, adequate material for their practical classes, suitable workshops and/or laboratories and trained teachers.
The absence of specialized materials makes the learning process even more limiting when it comes to the study of human morphology. Morphology involves the study of the individual constitution, including contents from anatomy, cytology, histology, and embryology. The teaching of these subjects is essentially practical, requiring teaching resources such as photomicrographs, histological slides, and anatomical pieces, all of which are visual resources, which prevents the visually handicapped from using them. Their learning has been based on listening to cassette tapes recorded by relatives or helpers of good will, since a collection of biological products covering all the areas of human morphology—cells, tissues, organs (isolated and/or incorporated in systems), embryos and fetuses, specifically intended for the special needs of these individuals still does not exist on the market, as attested by bibliographical research and investigations of patent banks.
The absence of these didactic resources necessary for learning has the effect of restricting the right of the visually handicapped to quality instruction, the access to information, and the scientific and technological development in this area. These limitations, in effect, lead to difficulties in school and to educational exclusion of these individuals, and may also culminate in obstacles to their professional qualification and insertion in the job market. At present, only in some schools of higher education are three-dimensional pieces, made of resin, used for the study of human embryology and macroscopic anatomy. There are, however, restrictions regarding their use for the visually handicapped, since they are not specific to needs such as: the possibility of handling and manually exploring the cells, tissues, and organs; variation in the size of the pieces for better understanding of the structures under study; pieces that can be disassembled and reassembled, according to the functional study of the structure.
The objects of the present invention are the training of specialized teachers and the improvement of teaching and learning processes for the visually handicapped in basic, intermediate, and higher education, making classes and/or practical activities in cytology, histology, anatomy, and embryology more dynamic and interactive, as well as improving the teacher-student relationship and the relation of the student with the objects of study, both in the classroom and in science centers, museums, and other places that provide informal education.
According to the present invention there is provided a collection of models for facilitating the study of at least one of a biological subject, an anatomical organ and an anatomical organ system of a living being by students both with and without visual impairments;
(a) at least one base for supporting at least one model structure;
(b) at least one scientific or technical structure model to be studied as a whole by students both with and without visual impairments;
(c) at least one substructure model of a plurality of individual and optionally separable substructure models, which may be movably arranged with respect to one another in accordance with the corresponding relationship between each said substructure model and said structure model as and/or between said substructure models;
(d) an interpretative set for said models for facilitating the formation of images from an associative and enduring learning skills method by students both with and without visual impairments
In the preferred embodiment the collection comprises a total of 51 biological models of which are 42 are three-dimensional and 9 are in relief. Also in the preferred embodiment, the interpretive set comprises a first part in the form of a both printed and Braille informative description comprising a classical scientific and technological approach, and a second part which comprises a detailed description in both printed and Braille form of each structure model or substructure models and the relationship between each said substructure model and said structure model and/or between said substructure models.
The three-dimensional products and products in relief, as well as the interpretative process, facilitate the association of theoretical concepts with the perception of form, dimension, topography, and proportion of the structures being studied. In this way, students with special educational needs and principally the visually handicapped are capable of recognizing and differentiating the cellular, histological, anatomical, and embryonic structures, through the use of textures and dimensions suitable for consideration of each piece or model created which contributes to their identification. Such recognition facilitates correlation between morphological and physiological aspects when handling each model. They are also capable of understanding, on the basis of previous study, the relation between the location of each structure and the various functions performed by the organism, including the different levels of organization of the human body. Consideration must be given to accompanying teaching tools that facilitate understanding, such as a guiding process for the use of the products, such as explanatory legends, audio-books, guide books in written or Braille form, with orientation for topographical exploration (forms, textures, raised or sunken parts, dimensions), the purpose of which is to guide the hands of the student over the piece and by means of which he becomes independent of others to study and learn the theoretical and practical contents covered, he further being able to use audition as a facilitator in his learning.
The invention is based on the need for teaching resources for the visually handicapped, with respect to the study of morphology, keeping in mind their special needs of learning through touch. To this end the three dimensional biological products and biological products in relief reproduce the structure of cells, cellular parts, tissues, phases of embryonic and fetal development, and organs, portraying the human body as closely as possible to what it actually looks like. Each product has specific characteristics that permit identification of its structures, such as that of the plasmatic membrane and of each cell part; of each tissue with its various types of cell (columnar, triangular, calceiform, with lashes or other microscopic characteristics); of each organ represented longitudinal or transverse section, with texturized details that permit, through touch, differentiate between the tissues of which it is composed, relating them to the function that each exerts and making it easier for the visually handicapped student to learn through association. Some organs, apart from being almost life-size, have also been reproduced in considerably enlarged dimensions so as to permit perception of microscopic details of their structures which was previously very difficult for such students. The representation of each organic system in isolation from the others permits a visually handicapped student not only to identify each organ by touch, but also to perceive its inter-relationships with the other different components of each system. The specifics of each product directly meet the needs of the visually handicapped
All the products of the collection were minutely tested with the targeted public (the visually handicapped) for the purpose of finding a convergence between product production issues and the needs and expectations of that public. The response given by the visually handicapped in their use of these products showed their fundamental importance, for by means of the response various adaptations were made, until each product, as well as the interpretative process, corresponded to the specific needs of these individuals.
A fundamental component for the success of the present invention was the choice of materials appropriate to the manufacture of the products described herein. In the course of the experiments, various materials were tested, and several factors, such as practicality, plasticity, and durability were considered, and the most adequate for the required detail, for handling, production and reproduction were chosen.
The products can be modeled in any moldable material, preferably in clay. The choice of this material was based on the fact that it is a very plastic material, allowing a great variety of textures and contours. The use of clay is also advantageous, as it allows several adaptations of textures to be made after experimental use with the visually handicapped, even when the products are already in the final phase. At the end of the clay modeling process, the products are fired in a specific oven. The aim of the firing is for the products to acquire resistance for future reproduction. With the conclusion of the stages of modeling, firing, and form production, the next step is the reproduction of the products in a definitive material; and plaster has been found to be advantageous and economically viable for three-dimensional models. Among the proven advantages, strength is essential since the visually handicapped sometimes need to use a firmer grip better to explore the pieces, which will be constantly handled, requiring greater strength and durability. The last part of the process of manufacturing the three-dimensional products consists of their being painted different colors to differentiate each structure. For models in relief, the choice of material also follows criteria such as durability and strength. With respect to relief work, the criterion is to chose a material that provides sufficient strength and sufficient relief to permit a tactile perception of the structures by the visually handicapped.
The painting of the products is to make them more attractive to the students who can see, with the aim of including everyone in the learning process, further facilitating memorization by a process of association (each epithelial is yellow, each connective tissue is pink). The choice of colors is therefore made according to didactic criteria for the three-dimensional cytological, histological and embryological models. For the three-dimensional anatomical models representing the different organs, colors as close as possible to those of the real organs are to be used. For cytological and histological relief models, a neutral color, such a beige, is used.
The interpretative orientation which features as a part of the present invention, represent one of the important differentials of the collection and is characterized as a theoretical-practical guide, the purpose of which is to orient the study of subject matter of the different areas of morphology, consists of two parts: the first describes the theoretical content, and the second describes each product of the collection. It is important to note that, in the first part, besides the classical approach t cytology, histology, anatomy, and embryology, there is also basic information of the physiology of the structures studied, which enriches the interdisciplinary approach. In the second part, the products are described in detail, with legends that accompany each piece. The purpose of the description of the products is to guide the hands of the visually handicapped over the product, making it easier for them to associate the basic content with the three-dimensional representation of the structures under study, whereby, according to their own testimony, “ . . . the formation of images that will make learning easier and more lasting” is made possible.
The invention described herein is additionally illustrated by means of the attached drawings which show the morphological models that make up the collection and in which:
FIGS. 1 to 42 illustrate three-dimensional models relating to the human body, many of greatly enlarged microscopic structures, and others which are approximately life-size; and
FIGS. 43 to 51 show basically planar relief models.
Number | Date | Country | Kind |
---|---|---|---|
PI 0305646-5 | Oct 2003 | BR | national |
This application is a Continuation In Part of application Ser. No. 10/576,874 filed Apr. 21, 2006, which is a US National Phase of International Application No. PCT/BR2004/000206 filed Oct. 21, 2004, which designated the U.S. and claims benefit of PI 0305646-5, filed Oct. 22, 2003, the entire contents of each of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10576874 | May 2007 | US |
Child | 11892066 | Aug 2007 | US |