The present invention relates to collimation apparatus for radiotherapy.
The technique of radiotherapy involves directing a beam of harmful high-energy radiation towards a tumour. The radiation causes damage to the tumour cells which, over time, destroys the cancer. As the beam is harmful, it is necessary to limit the radiation dose that is applied to the healthy tissue, whilst at the same time maintaining the dose delivered to the tumour. Accordingly, some means needs to be provided to de-limit the radiation beam so that its size is no larger than is necessary or achievable. Early radiotherapy machines used a collimation system as shown schematically (along the beam's eye view) in
Tumours are not generally rectangular, however. As a result, it is now common to use a so-called “multi leaf collimator”, which is made up of individual thin “leaves” of a high atomic number material such as tungsten, each of which can move independently in and out of the beam path in order to block the beam.
In some cases, as shown in
Prior to the development of the MLC, beams were de-limited to the shape of the tumour insofar as existing collimation arrangements permitted. When the multi-leaf collimator became available, novel forms of treatment were made possible such as conformal arc radiotherapy, in which the shape of the beam conforms at all times to the projected shape of the tumour along the instantaneous axis of the beam. This minimises radiation dose to healthy tissue either side of the tumour, and in combination with a rotating source that is able to direct a beam towards the patient from a range of different directions, can result in a very high dose within the tumour and a very small dose outside the tumour.
Conformal arc therapy can, however, only deliver a convex-shaped dose, i.e. one in which the dose steadily decreases away from the dose centre. Further developments in the use of multi-leaf collimators have included techniques such as intensity modulated radiotherapy (IMRT) and other techniques in which more complex shapes created by the multi-leaf collimator allow non-convex dose distributions to be built up over time. Generally, the MLC does not irradiate the entire tumour continuously in such techniques, and otherwise difficult but useful dose shapes can be developed such as a cylindrical dose conforming to the shape of a patient's hip in which (for example) a bone tumour is irradiated leaving the sensitive organs within the hip largely unirradiated. These can result in a need for an off-centre radiation field, as shown schematically in
Assuming that the beam aperture is 40 cm at the collimators, beam shapes such as those shown in
It should be remembered however that in order to shield the full beam, the diaphragms are required to be of the order of 8 cm thick solid tungsten material. That additional 15 cm of 8 cm thick tungsten imposes a significant weight burden on the diaphragms. Correspondingly, the mechanism required to move a significantly greater mass of diaphragm will be correspondingly heavier itself. Both of these increase the overall mass of the treatment head, which in turn causes the apparatus structure to deflect more, resulting in a less accurate treatment. It should be borne in mind that most clinical accelerators place the treatment head at the end of a long arm which is mounted on a rotatable support so that the treatment head can be rotated around the patient. Additional mass at the end of that arm causes the arm to deform in a direction which will vary (relative to the treatment head) as the treatment head traverses in an arc around the patient. The present invention therefore seeks to provide a diaphragm which is able to offer the necessary blocking of the radiation beam over a large proportion of the aperture (if necessary), whilst having minimal mass.
The present invention therefore provides a radiotherapy apparatus comprising a means for producing a beam of radiation directed along a beam axis and having a width in first and second directions transverse to the beam axis, a multi-leaf collimator for selectively limiting the width of the beam in at least the first direction, a block collimator for selectively limiting the width of the beam in at least the second direction, the block collimator comprising a diaphragm moveable into and out of the beam and having a thickness in the direction of the beam axis that varies.
The diaphragm can have a front edge of greater thickness than at least one region behind the front edge. It can also have a spine region extending from a rear part thereof towards the front edge that is greater thickness than at least one region displaced laterally with respect thereto. Together, these can cover the areas that will not be fully shadowed by a dynamically moving MLC.
A control means for the multi-leaf collimator can be arranged to extend leaves of the multi-leaf collimator to shadow regions of the beam that are blocked by a relatively thinner section of the diaphragm. This is made easier if the spine region extends from the rearmost part of the diaphragm, the spine region extends to the front edge of the diaphragm, the spine region is straight, the spine region is a central region of the diaphragm, and if the width of the spine region increases towards the front edge of the diaphragm.
Generally, the first and second directions will be mutually transverse.
The present invention also relates to a radiotherapy apparatus comprising a multi-leaf collimator and a block collimator, the block collimator comprising a diaphragm with variable thickness.
In a further aspect, the present invention provides a block collimator for use in radiotherapy apparatus comprising a diaphragm moveable into and out of a beam, and having a thickness in the direction of the beam axis that varies.
In a still further aspect, the present invention provides a radiotherapy apparatus comprising a means for producing a beam of radiation directed along a beam axis and having a width in first and second directions transverse to the beam axis, a multi-leaf collimator for selectively limiting the width of the beam in at least the first direction, a block collimator for selectively limiting the width of the beam in at least the second direction, the block collimator comprising a diaphragm moveable into and out of the beam and having a width that varies transverse to the direction of movement. Thus, parts of the diaphragm can be essentially reduced to zero thickness, leaving a central spine region and a wider front edge that preferably extends across substantially the entire width of the beam in the first direction.
An embodiment of the present invention will now be described by way of example, with reference to the accompanying figures in which;
Referring to
A multi-leaf collimator 106 operates in the Y axis. The multi-leaf collimator 106 (MLC) comprises a number of individual leaves 108 which can be extended into and out of the beam along a y axis perpendicular to the diaphragm axis 104. Each leaf can be selectively moved by a desired distance so as to shape the beam to a chosen curved outline such as that shown at 110. The extremity 112 of the curve 110 in the x axis is then met by the diaphragm 102. This both covers the inevitable small degree of leakage between the leaves 108, and allows for the possibility that the extremity 112 does not coincide with a leaf edge. Normally, leaves 108 that are behind the front edge 114 of the diaphragm 102 are redundant and can be withdrawn (as shown in
The diaphragm 102 of
The widening portion 122 of the spine 116 allows for the MLC leaves 108 to “catch up” as the diaphragm 102 moves forward. Generally, leaves 108 will be withdrawn to a greater extent in front of the diaphragm 102, and therefore as the diaphragm 102 moves forward to extend beyond a complete leaf, then that leaf will have a reasonable traverse distance in order to reach the central axis 104 of the block collimator. This traverse will take some time, and therefore the relatively greater width of the spine in 116 in the region 122 allows for this, as can be seen in
Meanwhile, the thinner portions 124, 126 are of greatly reduced weight, thereby reducing the weight of the diaphragm to an acceptable level yet still permitting extension of the diaphragm significantly beyond the central axis 100 of the beam.
As the carriages 132 do not extend to the centre of the field, however, this spacing 136 is unnecessary in the region beneath the spine 116 if the latter is centrally located. If the spine 116 is not central with respect to the diaphragm, then the availability of space will depend on where the spine is located relative to the position or range of movement of the carriages 132. Accordingly, in this embodiment the spine 116 also projects below the lower face of the diaphragm at 138. This means that more material can be placed in the spine region, improving the opacity of the diaphragm system. Alternatively, a corresponding amount of material can be removed from the upper edge of the spine, thereby reducing the overall depth of the collimator system and hence the radiation head, and improving the flexibility of the apparatus as a whole.
If the speed of movement of the MLC leaves is felt to be sufficient, or if the intended speed of the diaphragm is low enough, the widening portion 122 can be omitted leaving, potentially, a simple T-profile diaphragm.
Only a single spine is shown in the accompanying figures. However, it is possible to envisage a diaphragm having a plurality of spines, which would offer a choice of locations as to where to park opposing leaves. This additional flexibility may be useful in clinical situations, although it will reduce slightly the weight savings obtainable through the present invention.
It will of course be understood that many variations may be made to the above-described embodiment without departing from the scope of the present invention.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This Application is a Section 371 National Stage Application of International Application No. PCT/EP2007/004625, filed May 24, 2007 and published as WO 2008/141667 A1 on Nov. 27, 2008, the content of which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP07/04625 | 5/24/2007 | WO | 00 | 11/23/2009 |