Embodiments described herein relate generally to a collimator and an X-ray computed tomography apparatus.
The X-ray detector of an X-ray computed tomography apparatus or the like is equipped with a collimator to improve the detectability of direct rays by isolating each detection element from X-rays and removing scattered rays by limiting incident X-ray directions. Recently, a two-dimensional array type X-ray detector has been becoming popular. As this two-dimensional array type X-ray detector, a detector having a relatively small number of detection element rows (also called segments), typically four rows, arranged side by side has been in widespread use. Nowadays, with the use of a solid-state detection element obtained by combining a scintillator and a photodiode element or a solid-state detection element made of selenium or the like which directly converts X-rays into charge, a wide-field X-ray detector having 64 or more detection element rows has appeared on the market. A grid plate obtained by die-cutting a soft-material plate mixed with an X-ray shielding metal powder into a grid pattern is assumed as a collimator applied to such a two-dimensional array type X-ray detector.
In a collimator having such a structure, however, it is impossible to collimate a plurality of collimate regions partitioned by a grid to an X-ray focus.
In general, according to one embodiment, a collimator includes a collimator frame having a shape corresponding to part of a circular ring, a plurality of first partition plates which are supported on the collimator frame, are radially arrayed along a circumferential direction of the circular ring, and have shielding properties with respect to radiation, a plurality of first guide grooves radially provided in a surface of each of the first partition plates, and a plurality of second partition plates which are supported in the plurality of first guide grooves, are radially arrayed respectively in gaps between the first partition plates, and have shielding properties with respect to the radiation.
A collimator according to this embodiment will be described below with reference to the accompanying drawings. As shown in
The collimator 13 according to this embodiment is typically mounted on the two-dimensional array type X-ray detector of the X-ray computed tomography apparatus. The X-ray computed tomography apparatus includes a gantry portion (also called a gantry) 100 as a main structural member. The gantry portion 100 includes a rotating ring 102. A cone-beam X-ray tube 101 and an X-ray detector 11 are arranged on the rotating ring 102 so as to face each other. The collimator 13 is mounted on the X-ray detector 11. The collimator 13 will be described in detail later. Upon receiving high-voltage pulses periodically generated from a high voltage generator 109, the X-ray tube 101 generates X-rays. The X-ray detector 11 is formed by an ionization box-type detector or semiconductor detector. If the X-ray detector 11 is a semiconductor X-ray detector, a plurality of X-ray detection elements are arrayed in an arc form centered on the apex (X-ray focus F) of a cone beam, and a plurality of X-ray detection rows are arranged side by side in a direction almost parallel to the rotation axis of the rotating ring 102. A data acquisition system 104 generally called a DAS (Data Acquisition System) is connected to the X-ray detector 11. The data acquisition system 104 is provided with, for each channel, an I-V converter for converting the current signal obtained via each channel of the X-ray detector 11 into a voltage, an integrator for periodically integrating these voltage signals in synchronism with an X-ray irradiation period, an amplifier for amplifying an output signal from the integrator, and an analog/digital converter for converting an output signal from the amplifier into a digital signal. A preprocessing unit 106 is connected to the data acquisition system 104 via a noncontact data transmitter 105. The preprocessing unit 106 performs preprocessing, for the projection data detected by the data acquisition system 104, such as sensitivity unevenness correction processing between channels and the processing of correcting an extreme decrease in signal intensity or signal omission due to an X-ray absorber, mainly a metal portion. A storage device 112 stores projection data corrected by the preprocessing unit 106. A reconstruction processing unit 118 reconstructs volume data representing a three-dimensional distribution of CT values by an arbitrary cone beam image reconstruction algorithm based on stored projection data. A typical example of this cone beam image reconstruction algorithm is the weighted Feldkamp method. The Feldkamp method is an approximate reconstruction method based on a fan beam convolution/back projection method. Convolution processing is performed by regarding data as fan projection data on the premise that the cone angle is relatively small. However, back projection processing is performed along an actual ray.
An image processing unit (not shown) converts volume data into image data expressed by a two-dimensional coordinate system by rendering processing, multi-planar reformatting (MPR), or the like. A display device 116 displays image data. A host controller 110 controls a gantry driving unit 107 to stably rotate the rotating ring 102 at a constant speed in order to acquire projection data, that is, execute scanning. The host controller 110 performs overall control associated with scanning, for example, controlling the high voltage generator 109 to generate X-rays from the X-ray tube 101 during a scanning period, and controlling the data acquisition system 104 or the like in synchronism with X-ray generation.
As shown in
The collimator 13 in which X-ray shielding plates (partition plates) are assembled in a grid form in two directions, that is, the slice and channel directions, is provided on the X-ray source side of the two-dimensional array type X-ray detector 11 to improve the detectability of direct rays by optically isolating the respective detection elements and removing scattered rays by limiting incident directions.
In this case, a conventional collimator includes a plurality of collimator modules having the same structure. The plurality of collimator modules are arrayed in a polygonal shape centered on the X-ray focus. Each module covers part of a matrix (assumed to have n×m channels). Let m be the number of channels in the slice direction, and n be the number obtained by dividing a total number N of channels in the slice direction in the X-ray detector 11 by the number of collimator modules. Each module has (n+1) flat channel partition plates for isolating the detection elements in the channel direction. The (n+1) channel partition plates are arrayed on the module frame at slightly different mounting angles along the channel direction. In addition, each module includes (m+1) slice partition plates for isolating the detection elements in the slice direction. Each slice partition plate has a comb-like shape with a width that covers a sensitivity width corresponding to n channels. These slice partition plates are commonly inserted in the (n+1) channel partition plates. Although the central channel of the (n×m) collimate regions surrounded by the channel partition plates and the slice partition plates is collimated to the X-ray focus, the collimations of many other collimate regions deviate from the X-ray focus. This problem becomes more pronounced with an increase in the number of channels in the slice direction. In addition, sensitivity deteriorates at the joint portions of the collimator modules. Furthermore, stress due to centrifugal force accompanying high-speed rotation concentrates on the joint portion of each collimator module. This may lead to an uneven sensitivity distribution. This embodiment can solve these problems.
The collimator 13 can be fabricated as an integral structure as a whole in accordance with the fan angle of X-rays unlike the prior art in which a plurality of modules, each assembled independently, are arrayed in an arc form. In addition, the collimator 13 implements a structure which allows to have predetermined curvatures in the two directions, that is, the channel and slice directions, so as to accurately collimate all the collimate regions to the X-ray focus F. Note that the collimate regions are those that are surrounded by vertical and horizontal partition plates constituting the collimator 13. A line connecting the center of one end face of each collimate region to the center of the other end face is called a collimate line. The collimate line indicates the directivity of the collimate region.
As shown in
The plurality of channel partition plates 31 partition a plurality of collimate regions, together with the plurality of slice partition plates 33. The plurality of collimate regions respectively correspond to the plurality of detection elements. The plurality of channel partition plates 31 and the plurality of slice partition plates 33 are assembled so as to collimate the plurality of collimate regions to one point, the X-ray focus F in this case.
The collimator 13 includes the collimator frame 16. As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
This focusing property can be achieved by the assembly of the channel partition plates 31 and the slice partition plates 33. In other words, since the channel partition plates 31 and the slice partition plates 33 eliminate the necessity of mechanical processing such as curving, bending, twisting, and welding, it is possible to solve the problems of strength reduction and stress concentration due to such mechanical processing. This can also greatly reduce distortion, deflection, and tortion. In addition, the above focusing property can be obtained by the integral arrangement of the collimator 13 instead of the assembly of a plurality of modules. The collimator 13 is free from problems such as partial distortion due to excessive stress on module joint portions and the like and a great change in scattered ray removal accuracy at module joint portions, and can obtain continuity of output characteristics in the two directions, that is, the channel and slice directions.
The channel partition plates 31 and the slice partition plates 33 assembled in a grid form are internally and externally supported by the inner and outer abutment plates. The inner and outer abutment plates guarantee the maintenance of the grid form of the channel partition plates 31 and the slice partition plates 33.
The channel partition plate 31 is formed by cutting a thin molybdenum original plate having X-ray shielding properties into a rectangle. Guide rails are formed on the surface of the molybdenum plate with a resin. The slice partition plate 33 is molded from, for example, a thin molybdenum original plate having X-ray shielding properties.
The inner abutment plate is fixed to the inner side of the collimator frame 16 with an adhesive and by thread fastening. The channel partition plates 31 are inserted in the channel partition plate guide grooves 25, are made to abut against the inner abutment plate, and are fixed with, for example, an adhesive. The slice partition plates 33 are inserted in the slice partition plate guide grooves 35 of the channel partition plates 31 fixed to the collimator frame 16, and are made to abut against the outer abutment plate. The outer abutment plate is fixed to the collimator frame 16 by thread fastening.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2011-002190 | Jan 2011 | JP | national |
This application is a Continuation Application of PCT Application No. PCT/JP2012/050103, filed Jan. 5, 2012 and based upon and claiming the benefit of priority from Japanese Patent Application No. 2011-002190, filed Jan. 7, 2011, the entire contents of all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2012/050103 | Jan 2012 | US |
Child | 13590216 | US |