This invention relates generally to diagnosis of disease. More particularly, the invention relates to in situ diagnosis by optical methods.
Polyps of the colon are very common. There are two major types of colonic polyps, neoplastic and non-neoplastic. Non-neoplastic polyps are entirely benign with no malignant potential and do not necessarily need to be resected. Hyperplastic polyps, juvenile polyps, mucosal prolapse and normal mucosal polyps are examples of non-neoplastic polyps. Conversely, neoplastic polyps are pre-malignant, a condition requiring resection and further surveillance. Examples of premalignant neoplastic polyps are tubular adenoma, villous adenoma and tubulovillous adenoma.
Conventional laser-induced fluorescence emission and reflectance spectroscopy can distinguish between neoplastic and non-neoplastic tissue with accuracies approaching about 85%. However, typically these methods require that the full spectrum be measured with algorithms dependent on many emission wavelengths.
This invention, in one embodiment, relates to an optical probe and methods for identifying neoplastic polyps of the colon during endoscopy or colonoscopy. In one embodiment, the probe comprises 6 collection fibers surrounding a single illumination fiber placed directly in contact with tissue. In one embodiment, a method of the invention comprises laser induced fluorescence using 337 nm excitation and a threshold classification model that depends on two fluorescence intensity ratios: the intensity at about 403 nm divided by the intensity at about 431 nm and the intensity at about 414 nm divided by the intensity at 431 nm. The invention enables determining whether a polyp is neoplastic. Of particular interest, the invention enables such determination at the time of endoscopy particularly for diminutive polyps. In a preferred embodiment, the invention provides for identification of polyps under about 10 mm in size. The invention provides methods that reliably distinguish between neoplastic and non-neoplastic polyps at the time of endoscopy or colonoscopy. As a result, patients with non-neoplastic polyps are not subjected to the risk and expense of polypectomy.
The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.
The objects and features of the invention can be better understood with reference to the drawings described below. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
Instrument
The invention in one embodiment involves delivering 337 nm excitation light to tissue via a single optical fiber and collecting remitted light with a plurality of optical fibers surrounding the illumination fiber. The apparatus 100 used in the embodiment is shown in FIG. 1. The apparatus 100 shown in
The invention involves illuminating a specimen, such as an in vivo specimen, using illumination having a first wavelength, and observing a response signal, such as a fluorescent response. The response signal is sampled at at least a second wavelength, a third wavelength, and a fourth wavelength. The intensity of the response signal at the second wavelength and at the third wavelength is normalized using the intensity at the fourth wavelength. The normalized responses are used at input values for a discrimination function analysis. The output of the discrimination function analysis is an indication that the specimen examined is healthy or is diseased.
Referring to
Changes in optical properties of collagen and blood are the predominant factors in diagnostic differentiation among normal tissue, non-neoplastic polyps, and neoplastic polyps. An algorithm that treats collagen fluorescence, having a peak at about 403 nm in the system of the invention, and hemoglobin absorption, having a peak at about 414 nm for oxyhemoglobin, is sensitive to these changes.
Collagen and blood reside underneath the superficial cellular layer. A fiberoptic geometry designed to probe deeper into tissue but not too deep is more sensitive to changes in collagen and blood and hence in differentiating between polyps types. The six-around-one fiberoptic probe used according to principles of the invention probes deeper into tissue than does a single fiber system.
Interpatient variability in the intensity of fluorescent response is typically large and effects the diagnostic accuracy of techniques based on absolute fluorescence intensities. Historically, effective diagnostic algorithms have used some form of normalization to reduce interpatient variability. One common approach that has been used is to preprocess the data by normalizing the area under each fluorescence spectrum to unity. However, this approach requires that the entire fluorescence spectrum be measured to calculate the area to be used for the normalization factor. The necessity to record an entire spectral response simply to be able to obtain normalization data is redundant and inefficient. The inefficiency is particularly acute if only the emissions at 1 or 2 wavelengths are to be analyzed.
According to the invention, an intensity at a location such as at about 431 nm, between the fluorescence spectra of normal tissue, hyperplastic polyps and adenomatous polyps, is used as a normalization factor that provides effective normalization while requiring fluorescence to be measured at only one addition emission wavelength.
The combination of a new design of a fiberoptic probe for making measurements, an analytic method based on a small number of data points, and a simple method of obtaining a normalization factor for the data used provides enhanced diagnostic accuracy in distinguishing between neoplastic and non-neoplastic polyps. The efficacy of the new system and method is demonstrated in a single-center prospective clinical trial. A higher fraction of polyps were correctly classified with this technique, (e.g., accuracy=86%) when compared to other approaches. The accuracy of the method using two emission wavelengths is better than that obtained in retrospective clinical trials requiring many more wavelengths.
Analysis Method
Sensitivity Analysis
Potential Cost Savings
The ability to identify and distinguish benign and malignant polyps in situ could result in substantial cost savings. In this particular example, 39 of 94 polyps would have been spared from being resected and biopsied, representing a 41% savings in surgical and pathology charges. However, at present there is a false negative rate of 9.6%. The long term outcome of not resecting these polyps will need to be determined. In comparison, other techniques spared 14% of the polyps from being biopsied and had a false negative rate of 0.9%. If polyps greater than 5 mm in the latter study are excluded from this analysis, then 27% of the polyps would not have been biopsied and the technique would have a 3.2% false negative rate.
Application to Other Tissues
The system and method of the invention has been shown to work in colonic tissue. The invention, involving a new probe design and analytical method, can enhance the accuracy for identifying neoplasia in other tissues such as the esophagus, urinary bladder, oral cavity, bronchotracheal tree and cervix.
While the invention has been particularly shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
This invention was made with government support under a Small Business Innovative Research Grant (Contract # 1R43CA75773-01) awarded by the Department of Health and Human Services. The government may have certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3013467 | Minsky | Dec 1961 | A |
3632865 | Haskell et al. | Jan 1972 | A |
3809072 | Ersek et al. | May 1974 | A |
3890462 | Limb et al. | Jun 1975 | A |
3963019 | Quandt et al. | Jun 1976 | A |
D242393 | Bauman | Nov 1976 | S |
D242396 | Bauman | Nov 1976 | S |
D242397 | Bauman | Nov 1976 | S |
D242398 | Bauman | Nov 1976 | S |
4017192 | Rosenthal et al. | Apr 1977 | A |
4071020 | Puglise et al. | Jan 1978 | A |
4198571 | Sheppard | Apr 1980 | A |
4218703 | Netravali et al. | Aug 1980 | A |
4254421 | Kreutel, Jr. | Mar 1981 | A |
4273110 | Groux | Jun 1981 | A |
4357075 | Hunter | Nov 1982 | A |
4397557 | Herwig et al. | Aug 1983 | A |
4549229 | Nakano et al. | Oct 1985 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4662360 | O'Hara et al. | May 1987 | A |
4733063 | Kimura et al. | Mar 1988 | A |
4741326 | Sidall et al. | May 1988 | A |
4753530 | Knight et al. | Jun 1988 | A |
4768513 | Suzuki | Sep 1988 | A |
4800571 | Konishi | Jan 1989 | A |
4844617 | Kelderman et al. | Jul 1989 | A |
4845352 | Benschop | Jul 1989 | A |
4852955 | Doyle et al. | Aug 1989 | A |
4877033 | Seitz, Jr. | Oct 1989 | A |
4878485 | Adair | Nov 1989 | A |
4891829 | Deckman et al. | Jan 1990 | A |
4930516 | Alfano et al. | Jun 1990 | A |
4945478 | Merickel et al. | Jul 1990 | A |
4965441 | Picard | Oct 1990 | A |
4972258 | Wolf et al. | Nov 1990 | A |
4974580 | Anapliotis | Dec 1990 | A |
4979498 | Oneda et al. | Dec 1990 | A |
4997242 | Amos | Mar 1991 | A |
5003979 | Merickel et al. | Apr 1991 | A |
5011243 | Doyle et al. | Apr 1991 | A |
5022757 | Modell | Jun 1991 | A |
5028802 | Webb et al. | Jul 1991 | A |
5032720 | White | Jul 1991 | A |
5034613 | Denk et al. | Jul 1991 | A |
5036853 | Jeffcoat et al. | Aug 1991 | A |
5042494 | Alfano | Aug 1991 | A |
5048946 | Sklar et al. | Sep 1991 | A |
5054926 | Dabbs et al. | Oct 1991 | A |
5065008 | Hakamata et al. | Nov 1991 | A |
5071246 | Blaha et al. | Dec 1991 | A |
5074306 | Green et al. | Dec 1991 | A |
5083220 | Hill | Jan 1992 | A |
5091652 | Mathies et al. | Feb 1992 | A |
5101825 | Gravenstein et al. | Apr 1992 | A |
5120953 | Harris | Jun 1992 | A |
5122653 | Ohki | Jun 1992 | A |
5132526 | Iwasaki | Jul 1992 | A |
5139025 | Lewis et al. | Aug 1992 | A |
5154166 | Chikama | Oct 1992 | A |
5159919 | Chikama | Nov 1992 | A |
5161053 | Dabbs | Nov 1992 | A |
5162641 | Fountain | Nov 1992 | A |
5162941 | Favro et al. | Nov 1992 | A |
5168157 | Kimura | Dec 1992 | A |
5192980 | Dixon et al. | Mar 1993 | A |
5193525 | Silverstein et al. | Mar 1993 | A |
RE34214 | Carlsson et al. | Apr 1993 | E |
5199431 | Kittrell et al. | Apr 1993 | A |
5201318 | Rava et al. | Apr 1993 | A |
5201908 | Jones | Apr 1993 | A |
5203328 | Samuels et al. | Apr 1993 | A |
5225671 | Fukuyama | Jul 1993 | A |
5235457 | Lichtman et al. | Aug 1993 | A |
5237984 | Williams, III et al. | Aug 1993 | A |
5239178 | Derndinger et al. | Aug 1993 | A |
5248876 | Kerstens et al. | Sep 1993 | A |
5253071 | MacKay | Oct 1993 | A |
5257617 | Takahashi | Nov 1993 | A |
5260569 | Kimura | Nov 1993 | A |
5260578 | Bliton et al. | Nov 1993 | A |
5261410 | Alfano et al. | Nov 1993 | A |
5262646 | Booker et al. | Nov 1993 | A |
5274240 | Mathies et al. | Dec 1993 | A |
5284149 | Dhadwal et al. | Feb 1994 | A |
5286964 | Fountain | Feb 1994 | A |
5289274 | Kondo | Feb 1994 | A |
5294799 | Aslund et al. | Mar 1994 | A |
5296700 | Kumagai | Mar 1994 | A |
5303026 | Strobl et al. | Apr 1994 | A |
5306902 | Goodman | Apr 1994 | A |
5313567 | Civanlar et al. | May 1994 | A |
5319200 | Rosenthal et al. | Jun 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5324979 | Rosenthal | Jun 1994 | A |
5325846 | Szabo | Jul 1994 | A |
5329352 | Jacobsen | Jul 1994 | A |
5337734 | Saab | Aug 1994 | A |
5343038 | Nishiwaki et al. | Aug 1994 | A |
5345306 | Ichimura et al. | Sep 1994 | A |
5345941 | Rava et al. | Sep 1994 | A |
5349961 | Stoddart et al. | Sep 1994 | A |
5398685 | Wilk et al. | Mar 1995 | A |
5402768 | Adair | Apr 1995 | A |
5406939 | Bala | Apr 1995 | A |
5413092 | Williams, III et al. | May 1995 | A |
5413108 | Alfano | May 1995 | A |
5415157 | Welcome | May 1995 | A |
5418797 | Bashkansky et al. | May 1995 | A |
5419311 | Yabe et al. | May 1995 | A |
5419323 | Kittrell et al. | May 1995 | A |
5421337 | Richards-Kortum et al. | Jun 1995 | A |
5421339 | Ramanujam et al. | Jun 1995 | A |
5424543 | Dombrowski et al. | Jun 1995 | A |
5450857 | Garfield et al. | Sep 1995 | A |
5451931 | Miller et al. | Sep 1995 | A |
5458132 | Yabe et al. | Oct 1995 | A |
5458133 | Yabe et al. | Oct 1995 | A |
5467767 | Alfano et al. | Nov 1995 | A |
5469853 | Law et al. | Nov 1995 | A |
5477382 | Pernick | Dec 1995 | A |
5480775 | Ito et al. | Jan 1996 | A |
5493444 | Khoury et al. | Feb 1996 | A |
5496259 | Perkins | Mar 1996 | A |
5507295 | Skidmore | Apr 1996 | A |
5516010 | O'Hara et al. | May 1996 | A |
5519545 | Kawahara | May 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5536236 | Yabe et al. | Jul 1996 | A |
5545121 | Yabe et al. | Aug 1996 | A |
5551945 | Yabe et al. | Sep 1996 | A |
5556367 | Yabe et al. | Sep 1996 | A |
5562100 | Kittrell et al. | Oct 1996 | A |
5579773 | Vo-Dinh et al. | Dec 1996 | A |
5582168 | Samuels et al. | Dec 1996 | A |
5587832 | Krause | Dec 1996 | A |
5596992 | Haaland et al. | Jan 1997 | A |
5599717 | Vo-Dinh | Feb 1997 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5612540 | Richards-Korum et al. | Mar 1997 | A |
5623932 | Ramanujam et al. | Apr 1997 | A |
5647368 | Zeng et al. | Jul 1997 | A |
5662588 | Lida | Sep 1997 | A |
5685822 | Harhen | Nov 1997 | A |
5690106 | Bani-Hashemi et al. | Nov 1997 | A |
5693043 | Kittrell et al. | Dec 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5697373 | Richards-Kortum et al. | Dec 1997 | A |
5699795 | Richards-Kortum | Dec 1997 | A |
5704892 | Adair | Jan 1998 | A |
5707343 | O'Hara et al. | Jan 1998 | A |
5713364 | DeBaryshe et al. | Feb 1998 | A |
5717209 | Bigman et al. | Feb 1998 | A |
5730701 | Furukawa et al. | Mar 1998 | A |
5733244 | Yasui et al. | Mar 1998 | A |
5735276 | Lemelson | Apr 1998 | A |
5746695 | Yasui et al. | May 1998 | A |
5768333 | Abdel-Mottaleb | Jun 1998 | A |
5769792 | Palcic et al. | Jun 1998 | A |
5773835 | Sinofsky et al. | Jun 1998 | A |
5791346 | Craine et al. | Aug 1998 | A |
5795632 | Buchalter | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5807248 | Mills | Sep 1998 | A |
5813987 | Modell et al. | Sep 1998 | A |
5817015 | Adair | Oct 1998 | A |
5830146 | Skladnev et al. | Nov 1998 | A |
5833617 | Hayashi | Nov 1998 | A |
5840035 | Heusmann et al. | Nov 1998 | A |
5842995 | Mahadevan-Jansen et al. | Dec 1998 | A |
5855551 | Sklandnev et al. | Jan 1999 | A |
5860913 | Yamaya et al. | Jan 1999 | A |
5863287 | Segawa | Jan 1999 | A |
5865726 | Katsurada et al. | Feb 1999 | A |
5876329 | Harhen | Mar 1999 | A |
5920399 | Sandison et al. | Jul 1999 | A |
5921926 | Rolland et al. | Jul 1999 | A |
5929985 | Sandison et al. | Jul 1999 | A |
5931779 | Arakaki et al. | Aug 1999 | A |
5938617 | Vo-Dinh | Aug 1999 | A |
5941834 | Skladnev et al. | Aug 1999 | A |
5983125 | Alfano et al. | Nov 1999 | A |
5989184 | Blair et al. | Nov 1999 | A |
5991653 | Richards-Kortum et al. | Nov 1999 | A |
5995645 | Soenksen et al. | Nov 1999 | A |
6021344 | Lui et al. | Feb 2000 | A |
6058322 | Nishikawa et al. | May 2000 | A |
6069689 | Zeng et al. | May 2000 | A |
6091985 | Alfano et al. | Jul 2000 | A |
6095982 | Richards-Kortum et al. | Aug 2000 | A |
6096065 | Crowley | Aug 2000 | A |
6099464 | Shimizu et al. | Aug 2000 | A |
6104945 | Modell et al. | Aug 2000 | A |
6119031 | Crowley | Sep 2000 | A |
6124597 | Shehada et al. | Sep 2000 | A |
6146897 | Cohenford et al. | Nov 2000 | A |
6169817 | Parker et al. | Jan 2001 | B1 |
6208887 | Clarke et al. | Mar 2001 | B1 |
6241662 | Richards-Kortum et al. | Jun 2001 | B1 |
6243601 | Wist | Jun 2001 | B1 |
6246471 | Jung et al. | Jun 2001 | B1 |
6246479 | Jung et al. | Jun 2001 | B1 |
6285639 | Maenza et al. | Sep 2001 | B1 |
6312385 | Mo et al. | Nov 2001 | B1 |
6317617 | Gilhijs et al. | Nov 2001 | B1 |
D453832 | Morrell et al. | Feb 2002 | S |
D453962 | Morrell et al. | Feb 2002 | S |
D453963 | Morrell et al. | Feb 2002 | S |
D453964 | Morrell et al. | Feb 2002 | S |
6377842 | Pogue et al. | Apr 2002 | B1 |
6385484 | Nordstrom et al. | May 2002 | B1 |
6411835 | Modell et al. | Jun 2002 | B1 |
6411838 | Nordstrom et al. | Jun 2002 | B1 |
D460821 | Morrell et al. | Jul 2002 | S |
6421553 | Costa et al. | Jul 2002 | B1 |
6427082 | Nordstrom et al. | Jul 2002 | B1 |
6571118 | Utzinger et al. | May 2003 | B1 |
6574502 | Hayashi | Jun 2003 | B1 |
20020007123 | Balas et al. | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
0 135 134 | Mar 1985 | EP |
0 280 418 | Aug 1988 | EP |
0 335 725 | Oct 1989 | EP |
0 444 689 | Sep 1991 | EP |
0 474 264 | Mar 1992 | EP |
0 641 542 | Mar 1995 | EP |
0 689 045 | Dec 1995 | EP |
0 737 849 | Oct 1996 | EP |
08-280602 | Oct 1996 | JP |
1 223 092 | Apr 1986 | SU |
WO 9219148 | Nov 1992 | WO |
WO 9314688 | Aug 1993 | WO |
WO 9426168 | Nov 1994 | WO |
9500067 | Jan 1995 | WO |
WO 9504385 | Feb 1995 | WO |
WO 9705473 | Feb 1997 | WO |
WO 9830889 | Feb 1997 | WO |
WO 9748331 | Dec 1997 | WO |
WO 9805253 | Feb 1998 | WO |
WO 9824369 | Jun 1998 | WO |
WO 9841176 | Sep 1998 | WO |
WO 9918847 | Apr 1999 | WO |
WO 9920313 | Apr 1999 | WO |
WO 9920314 | Apr 1999 | WO |
WO 9947041 | Sep 1999 | WO |
WO 9957507 | Nov 1999 | WO |
WO 9957529 | Nov 1999 | WO |
WO 0015101 | Mar 2000 | WO |
WO 0059366 | Oct 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040010187 A1 | Jan 2004 | US |