The invention relates to a color-adaptive lighting system for producing a light mixture which lies on the Planckian locus, having a housing, a first light source in the form of at least one low-pressure discharge lamp, a second light source in the form of at least two light-emitting diodes (LEDs), at least one reflector, which is arranged downstream of the low-pressure discharge lamp in the emission direction of the lighting apparatus, and a ballast for operating the light sources and controlling the intensity of the light sources.
WO 2004/011846 A1 has disclosed a lamp system in which a fluorescent lamp with a color locus in the green-blue spectral range is combined with an LED with a color locus in the yellow-red spectral range. This lamp system requires the use of fluorescent lamps with a special fluorescent coating and excludes the use of “normal” fluorescent lamps with a white color locus. In addition, no “normal” red, green and blue LEDs can be used either, but LEDs with a special yellow-red spectral range are required for this lamp system.
The object of the present invention is to provide a color-adaptive lighting system comprising red, green and blue LEDs and a conventional “white” fluorescent lamp, with which a light mixture can be produced which lies on the Planckian locus. The aim is to provide a lighting apparatus which produces an individually adjustable white light for lighting purposes. In this case, the light mixture should be so homogeneous that, even at the diffusing and/or covering plate, which emits the light, of the lighting system, no differently colored points or areas are visible. At the same time, the heating-up of the LEDs should be kept as low as possible in order to achieve an efficiency of the lighting system and of the life of the LEDs which is as high as possible.
In the case of a color-adaptive lighting system having a housing, a first light source in the form of at least one low-pressure discharge lamp, a second light source in the form of at least two light-emitting diodes LEDs, at least one reflector, which is arranged downstream of the low-pressure discharge lamp in the emission direction of the lighting apparatus, and a ballast for operating the light sources and controlling the intensity of the light sources, the object is achieved by virtue of the fact that the at least two LEDs are arranged in the lighting system in such a way that the main emission direction of the LEDs points in the direction of the reflector.
Owing to the fact that the light from the LEDs is emitted into the reflector, the path of the light is extended until it emerges from the lighting system and thorough mixing of the light from the low-pressure discharge lamp with the light from the LEDs is markedly improved. Owing to the alignment of the differently colored LEDs in the direction of the rearward reflector, the LEDs are no longer visible behind a possible diffusing and/or covering plate. Advantageously, the low-pressure discharge lamp is a compact fluorescent lamp or a linear fluorescent lamp.
For an optimum light mixture, the lighting system, as the second light source, advantageously comprises more than two LEDs, the LEDs having a yellow, red, green and/or blue light spectrum. LEDs with differently colored light spectra can also be combined to form one LED in a common housing. As a result, the control of the light color of the light produced by the lighting system is improved.
Optimum operation and long life of the LEDs requires an ambient temperature for the LEDs which is as cool as possible. For this purpose, the LEDs are fixed on a holder, which consists of a heat-dissipating material. In addition, the holder may have cooling ribs in order to achieve further improved cooling.
In order to construct the lighting system in a manner which is as simple and cost-effective as possible, it is also conceivable for the housing of the lighting apparatus itself to consist of a thermally conductive material (metal) and for the LEDs to be fixed directly to the housing. In this case, the cooling ribs are advantageously fitted on the outside on the housing.
The light mixture of the light from the low-pressure discharge lamp with the light from the LEDs is further improved if, in the case of a plurality of LEDs, these LEDs are each arranged in a row parallel to the axis of the first light source to the left and to the right of the first light source. In this case, it is expedient for avoiding streaking for the LEDs which are arranged in a row to each alternate in terms of their light color. If, on the other hand, LEDs are used in which the light mixture already takes place in the LED housing, such as, for example, so-called red-green-blue LEDs (RGB LEDs) in which each RGB LED comprises a red, green and blue LED, the sequence no longer needs to be followed since in this case the light color of the RGB LEDs can take place by means of them being driven.
The lighting system advantageously has a covering plate in the emission direction and possibly a diffusing plate which is positioned upstream of the covering plate in the emission direction, it also being possible for the covering plate and the diffusing plate to be combined to form a common covering and diffusing plate.
The invention will be explained in more detail below with reference to exemplary embodiments. In the figures:
Furthermore, holders 7, 8 consisting of a highly conductive material such as, for example, aluminum are also fixed on the inside to the two longitudinal sides 5, 6 of the housing 2, on which holders LEDs 9, 10 are applied in thermally conductive contact. The holders 7, 8 are in this case designed such that the LEDs are positioned in front of the edge of the reflector 3 and their axis of symmetry is directed towards the inner face of the reflector 3 in such a way that virtually all of the light produced by the LEDs 7, 8 is emitted into the reflector 3. For improved dissipation of heat, the holders also have cooling ribs 11, 12.
For increased light mixing, the light exit opening of the housing is covered by a diffusing plate 13. The luminaire also has a translucent cover 14 in front of the diffusing plate.
All the light sources are operated via a ballast (not illustrated here), which is likewise included in the lighting systems in
Number | Date | Country | Kind |
---|---|---|---|
10 2005 007 565.7 | Feb 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2006/000275 | 2/15/2006 | WO | 00 | 8/20/2007 |