The annexed drawings show non-limiting exemplary embodiments, wherein
In the drawings, identical reference numerals indicate similar components or components with a similar function.
The light source housing 4 houses two or more light sources. Each light source may be configured to output light with a different color, or a first number of light sources may be configured to output light having a first color, and a second number of light sources may be configured to output light having a second color. Thus, light of a desired color may be generated by switching one or more light sources on, and the other light sources off. Instead of switching light sources on or off, also the intensity of the light from the light sources may be varied.
In a preferred embodiment, the output light intensity of each light source may be controlled such that the lamp 2 according to the present invention may generate a spectrum of possible colors by combining light with different colors and different intensities.
A lamp driving circuit 10 for driving two light sources 12A and 12B is shown in
The voltage at node 22C is supplied to a first Schmitt trigger circuit 24A. The output of the first Schmitt trigger circuit 24A is supplied to the first lamp ballast circuit 30A and to a second Schmitt trigger circuit 24B. The output of the second Schmitt trigger circuit 24B is supplied to the second lamp ballast circuit 30B.
It is noted that the memory unit 28 and the processing unit 26 may be incorporated in one (e.g. semiconductor) device. Further, if the shape of the voltage is processed by an algorithm to obtain the setting of each light source 12A, 12B as mentioned above, said algorithm may be embedded in the processing unit 26 and the memory unit 28 may be omitted.
The embodiment of
In the circuits of
The TRIAC dimmer circuit 14 changes the shape of the alternating voltage depending on a setting of a variable resistor. The TRIAC dimmer circuit 14 is a well-known circuit and is not described in more detail here. The TRIAC dimmer circuit 14 changes a sine wave shaped voltage such that the output voltage is kept substantially zero as long as the sine wave shaped input voltage is below a predetermined level. The variable resistor may determine said level. Thus, after a zero crossing of the alternating voltage, the TRIAC dimmer circuit 14 does not conduct and blocks the input voltage.
After the alternating input voltage has increased to a level above the predetermined level, the TRIAC dimmer circuit 14 conducts the input voltage, and the output voltage is substantially identical to the input voltage. As soon as the input voltage reaches its next zero crossing, the TRIAC dimmer circuit 14 blocks the input voltage again. Thus, during a first part of each half period of the sine wave the output voltage is zero. At a predetermined phase angle of the sine wave, the output voltage substantially instantaneously switches to a level corresponding to said sine wave input voltage.
A TRIAC dimmer circuit may be employed as the phase angle dimmer circuit 14, but also other circuits may function as the phase angle dimmer circuit 14 for controlling the color adjustable lamp. However, it is not essential to the present invention that a phase angle dimmer circuit is used. Other kind of circuits shaping an alternating voltage may as well be employed. The shape of the voltage essentially should be periodically determinable, i.e. the shape of the voltage is periodic and for each period at least one characteristic of the voltage may be determined for detecting a setting of a user interface, such as the variable resistor of a TRIAC dimmer circuit.
The TRIAC dimmer circuit output voltage is rectified by the rectifier circuit 20 resulting in a half sine wave voltage. Such a rectified voltage may be advantageously supplied to the lamp ballast circuits 30A and 30B, since they may require a rectified voltage for operating the coupled light source 12A or 12B, respectively. Thus, the lamp ballast circuits 30A and 30B and the corresponding light sources 12A and 12B are provided with a suitable light source supply voltage.
Each lamp ballast circuit 30A and 30B is provided with an input node for switching the coupled light source 12A, 12B on or off. The rectified voltage is also input in a voltage divider circuit comprising the first resistor 22A and the second resistor 22B, creating a voltage at node 22C that has the same shape, but with a lower level. The voltage at node 22C is input in a Schmitt trigger circuit. In casu, the Schmitt trigger circuit 24 outputs a low voltage when the input voltage is above a predetermined voltage and a high voltage when the input voltage is below said predetermined voltage. Inputting a sine wave results in a square wave output. The duty cycle of the square wave, i.e. the length of the period the square wave is high with respect to the length of one period of the square wave, depends on the shape of the input voltage and the predetermined voltage.
When the output of the first Schmitt trigger circuit 24A is high, the lamp ballast circuit 30A is switched on. The Schmitt trigger circuit 24B outputs a low voltage due to the high output voltage of the first Schmitt trigger device 24A and thus switches lamp ballast circuit 30B off. Therefore, when the first light source 12A is on, the second light source 12B is off, and the other way round. The duty cycle of the square wave determines the period during which the first light source 12A is on and the period during which the second light source 12B is on.
The duty cycle of the square wave voltages output by the Schmitt trigger circuits 24A and 24B depends on the phase angle of the supplied alternating voltage set by the phase angle dimmer circuit 14. Depending on said duty cycle the first light source 12A emits an amount of light having a first color and the second light source 12A emits an amount of light having a second color. The total light emitted by the two light sources 12A and 12B may thus have a color that is set by adjusting the intensity of the light emitted by each light source 12A and 12B.
In the above described embodiment using two Schmitt trigger circuits 24A and 24B, at any moment one of the two light sources 12A, 12B is on and the other is off. However, in another embodiment, the light sources 12A and 12B may be on and off simultaneously. The lamp driving circuit embodiment illustrated in
In the circuit illustrated in
The user interface of
The user interface of
The user-interface knobs 40 of
It is noted that in the described and illustrated embodiments, if no voltage shaping circuit is employed, the color adjustable lamp may still function correctly. The shape of the supplied voltage may then be detected as a sine wave, if coupled to a mains voltage supply for example, and the output may be determined accordingly. In the embodiment of
In the above description as well as in the appended claims, ‘comprising’ is to be understood as not excluding other elements or steps and ‘a’ or ‘an’ does not exclude a plurality. Further, any reference signs in the claims shall not be construed as limiting the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
04103473.7 | Jul 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/52338 | 7/14/2005 | WO | 00 | 1/17/2007 |