Color cathode ray tube having an improved shadow mask structure

Information

  • Patent Grant
  • 6274974
  • Patent Number
    6,274,974
  • Date Filed
    Wednesday, February 16, 2000
    24 years ago
  • Date Issued
    Tuesday, August 14, 2001
    23 years ago
Abstract
A color cathode ray tube including a generally rectangular shadow mask with at least a long side, a short side and a corner, and having a curved apertured portion with a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with the apertured portion and a skirt portion bent back from a periphery of the curved imperforate portion. A generally rectangular support frame is provided for suspending the shadow mask by spot welding the skirt portion thereto within a panel portion of the color cathode ray tube. The skirt portion is provided with a plurality of slits extending in a direction of a height of the skirt portion and a plurality of embossments extending in the direction of the height of the skirt portion in one of a long side and a short side of the skirt portion. The plurality of slits and the plurality of embossments are juxtaposed around a circumference of the skirt portion with a majority of the plurality of slits in the one of the long side and the short side of the skirt portion being unbridged slits or with the plurality of slits extending a distance no greater than 70% of the height of the skirt portion from a rear end of the skirt portion on an opposite side thereof from the panel portion.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a shadow mask type color cathode ray tube, and more particularly to a shadow mask type color cathode ray tube provided with a shadow mask capable of being installed into the color cathode ray tube without causing curvature distortions or reduction in strength of the shadow mask by reducing curls occurring in the skirt portion thereof in press-forming the shadow mask.




Generally in assembling a shadow mask type color cathode ray tube, a skirt portion of the shadow mask formed by press-forming is fitted within a support frame, the shadow mask is affixed to the support frame by spot welding, and then the support frame is suspended within a panel portion of the color cathode ray tube such that the shadow mask is positioned adjacent to, but spaced from a phosphor film formed on the inner surface of a faceplate of the panel portion.





FIGS. 4A

to


4


C are respectively structural views showing an example of the shadow mask used for a conventional color cathode ray tube.

FIG. 4A

is a front view of the shadow mask,

FIG. 4B

is an enlarged fragmentary side view of an area in the vicinity of welds in the skirt portion thereof, and

FIG. 4C

is a sectional view of a region extending from an imperforate portion to the skirt portion. In

FIGS. 4A

to


4


C, reference numeral


41


designates a shadow mask;


42


is an apertured portion;


43


is an imperforate portion; and


44


is a skirt portion, and x marks indicate welds.




The shadow mask


41


has a curved apertured portion


42


having a multiplicity of electron-transmissive apertures, a curved imperforate portion


43


surrounding and integral with the apertured portion


42


and a skirt portion


44


bent back from a periphery of the curved imperforate portion


43


, and is usually integrally formed by press-forming a multi-apertured thin sheet-like metal blank.




In this case, the multi-apertured thin sheet-like metal blank is very thin and relatively weak in strength. Therefore, the press-formed shadow mask


41


is not always good in forming characteristics. Especially, the skirt portion


44


of the shadow mask


41


curls outwardly by a distance S from a straight line passing through a bend line between the imperforate portion


43


and the skirt portion


44


and parallel to the longitudinal axis of the cathode ray tube, in a region centering about the center of each side of the generally rectangular shadow mask


41


, as shown in FIG.


4


C.




The skirt portion


44


of the press-formed shadow mask


41


is fitted within or outside a support frame (not shown), and is welded and affixed to the support frame at a few points. As indicated in

FIG. 4B

by x marks, welds of the skirt portion


44


and the support frame are located two in the vicinity of the center of each of the long and short sides of the shadow mask


41


, and one at each of the four corners thereof, for example.




When the conventional shadow mask


41


is press-formed, occurrence of the curl S in the skirt portion


44


is unavoidable, and if the curl S is excessively large, it is an obstacle to fitting the skirt portion


44


into the support frame and welding the fitted portion thereof to the support frame, resulting in reduction of workability.




Further, when the skirt portion


44


of the conventional shadow mask


41


having the large curl S is forcibly fitted in the support frame, the stress applied to the skirt portion


44


is transmitted to the imperforate portion


43


and the apertured portion


42


, and distorts the curved contour of the apertured portion


42


of the shadow mask


41


, and as a result, the color selection property of the shadow mask


41


is degraded, and the strength of the shadow mask


41


is reduced.




SUMMARY OF THE INVENTION




The present invention solves these problems as noted above, and an object of the present invention is to provide a shadow mask type color cathode ray tube provided with a shadow mask having the workability improved in being affixed to the support frame and its curvature distortions prevented, by reducing the amount of curls in the skirt portion of the press-formed shadow mask.




For achieving the aforesaid object, a color cathode ray tube according to an embodiment of the present invention includes a generally rectangular shadow mask having a curved apertured portion having a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with the apertured portion and a skirt portion bent back from a periphery of the curved imperforate portion, and a generally rectangular support frame for suspending the shadow mask by spot welding the skirt portion thereto, within a panel portion of the color cathode ray tube; wherein the skirt portion is provided with a plurality of slits extending in a direction of a height of the skirt portion and a plurality of embossments extending in the direction of the height of the skirt portion, and the slits and the embossments are juxtaposed around a circumference of the skirt portion.











BRIEF DESCRIPTION OF THE DRAWINGS




The drawings form an integral part of the specification and are to be read in conjunction therewith, in which like reference numerals designate similar components throughout the figures, and in which:





FIG. 1

is a sectional view showing a schematic structure of an embodiment of a shadow mask type color cathode ray tube according to the present invention;





FIGS. 2A

to


2


D are respectively structural views showing a first embodiment of a shadow mask used for the color cathode ray tube shown in

FIG. 1

,

FIG. 2A

being a top view thereof,

FIG. 2B

being a side view of a long side thereof,

FIG. 2C

being a side view of a short side thereof, and

FIG. 2D

being an enlarged fragmentary perspective view of the skirt portion thereof;





FIGS. 3A

to


3


C are respectively structural views showing a second embodiment of a shadow mask used for the color cathode ray tube shown in

FIG. 1

,

FIG. 3A

being a top view thereof,

FIG. 3B

being a side view of a long side thereof, and

FIG. 3C

being a side view of a short side thereof;





FIGS. 4A

to


4


C are respectively structural views showing one example of a shadow mask used for a conventional color cathode ray tube,

FIG. 4A

being a top view thereof,

FIG. 4B

being an enlarged fragmentary side view of an area in the vicinity of welds of a skirt portion, and

FIG. 4C

being a sectional view of a region extending from an imperforate portion to the skirt portion;





FIG. 5

is a graph showing a relationship between the amount of curls and the slit depth/skirt portion height % in shadow masks with slits only and shadow masks with slits and embossments, for explaining the present invention;





FIGS. 6A

to


6


D show a modification of the first embodiment,

FIG. 6A

being a top view thereof,

FIG. 6B

being a side view of a long side thereof,

FIG. 6C

being a side view of a short side thereof, and

FIG. 6D

being an enlarged fragmentary perspective view of a skirt portion thereof;





FIGS. 7A

to


7


C show a modification of the second embodiment,

FIG. 7A

being a top view thereof,

FIG. 7B

being a side view of a long side thereof, and

FIG. 7C

being a side view of a short side thereof;





FIG. 8

is a sectional view of a color cathode ray tube according to the present invention employing a shadow mask according to the modification shown in

FIGS. 6A

to


6


D or the modification shown in

FIGS. 7A

to


7


C; and





FIGS. 9A and 9B

are respectively enlarged fragmentary perspective views of a skirt portion showing two other embodiments of the embossments in the skirt portion of the shadow mask according to the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A color cathode ray tube according to an embodiment of the present invention includes a generally rectangular shadow mask having a curved apertured portion having a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with the apertured portion and a skirt portion bent back from a periphery of the ed imperforate portion, and a generally rectangular support frame for suspending the shadow mask by spot welding the skirt portion thereto, within a panel portion of the color cathode ray tube; wherein the skirt portion is provided with a plurality of slits extending in a direction of a height of the skirt portion from a rear end of the skirt portion on an opposite side from the panel portion and a plurality of embossments extending in the direction of the height of the skirt portion from the rear end of the skirt portion, and the slits and the embossments are juxtaposed around a circumference of the skirt portion.




In a color cathode ray tube according to a more specific embodiment of the present invention, the plurality of slits extend a distance of 30 to 70% of the height of the skirt portion from the rear end thereof and the plurality of embossments extend an entire length of the height of the skirt portion.




In an embodiment of the present invention, a pair of the plurality of slits are disposed one on each side of a midpoint of each of long and short sides of the skirt portion, and remainders of the plurality of slits and the plurality of embossments are arranged alternately with each other.




In another embodiment of the present invention, a pair of the plurality of embossments are disposed one on each side of a midpoint of each of long and short sides of the skirt portion, and remainders of the plurality of slits and the plurality of embossments are arranged alternately with each other.




According to these embodiments, a plurality of slits and a plurality of embossments can be formed to be juxtaposed over a wide region of each of long and short sides of the skirt portion in the same operation used for press-forming the skirt portion. This reduces significantly the tendency of the press-formed skirt portion to return to its initial form, reduces the curl S produced in the skirt portion, and limits the curl S within a relatively small range over the entire periphery of the skirt portion. Therefore, the stress caused to the skirt portion by fitting the skirt portion in the support frame is not transmitted to the imperforate portion or the apertured portion so that the curved contour of the apertured portion of the shadow mask is not distorted, and consequently the color selection property of the shadow mask is not deteriorated, or the strength of the shadow mask is not reduced.




The embodiments of the present invention will be described hereinafter with reference to the drawings.





FIG. 1

is a sectional view showing a schematic structure of an embodiment of a shadow mask type color cathode ray tube according to the present invention.




In

FIG. 1

, reference numeral


1


designates a panel portion;


1


A is a faceplate;


2


is a neck, portion;


3


is a funnel portion;


4


is a phosphor film;


5


is a shadow mask;


5


U is an apertured portion;


5


N is an imperforate portion;


5


S is a skirt portion;


6


is a support frame;


7


is an internal magnetic shield;


8


is a deflection yoke;


9


is an electron gun;


10


is a color purity adjustment magnet;


11


is a four-pole magnet for static beam convergence adjustment;


12


is a six-pole magnet for static beam convergence adjustment; and


13


is an electron beam.




An evacuated envelope (glass bulb) constituting the color cathode ray tube comprises the panel portion


1


having the generally rectangular faceplate


1


A, the elongated cylindrical neck portion


2


housing the electron gun


8


therein, and the funnel portion


3


joining the panel portion


1


and the neck portion


2


. In the panel portion


1


, the phosphor film


4


is formed on the internal surface of the faceplate


1


A, and the support frame


6


is affixed to the internal surface of the sidewall of the panel portion. In incorporating the shadow mask


5


, the skirt portion


5


S is welded to the support frame


6


, and the apertured portion


5


U and the imperforate portion


5


N are positioned adjacent to, but spaced from the phosphor film


4


. In the funnel portion


3


, the internal magnetic shield


7


is positioned on the side thereof facing the panel portion


1


, and the deflection yoke


8


is mounted on the side thereof facing the neck portion


2


around the funnel portion. Externally of the neck portion


2


are juxtaposed the color purity adjustment magnet


10


, the four-pole magnet


11


for static beam convergence adjustment, and the six-pole magnet


12


for static beam convergence adjustment. Three electron beams


13


(only one shown in

FIG. 1

) projected from the electron gun


9


impinge, after having been deflected in a desired direction by the deflection yoke


8


, upon the phosphor film


4


through a multiplicity of electron-transmissive apertures provided in the apertured portion


5




u


of the shadow mask


5


to reproduce the desired image on the phosphor film


4


.




In this case, the operation of the color cathode ray tube according to the present embodiment, that is, the image display operation is the same as that in the conventional color cathode ray tube of this kind, and the image display operation has been well known. Therefore, the description of the image display operation in the color cathode ray tube according to the present embodiment will be omitted.





FIGS. 2A

to


2


D are respectively structural views showing a first embodiment of a shadow mask


5


used for the color cathode ray tube shown in

FIG. 1

,

FIG. 2A

being a top view thereof,

FIG. 2B

being a side view of a long side thereof,

FIG. 2C

being a side view of a short side thereof,

FIG. 2D

being an enlarged fragmentary perspective view of the skirt portion thereof.




The material thickness of the shadow ask is normally in the range of 0.1 to 0.2 mm. In the present embodiment, a Fe—Ni Invar alloy material having 0.13 mm of thickness was used.




For the support frame


6


, normally, low carbon steel or stainless steel having 1 to 2 mm of thickness is used. In the present embodiment, low carbon steel having 1.2 mm of thickness was used.




In

FIGS. 2A

to


2


D, reference numerals


14




1


,


14




2


,


14




3


,


14




4


,


14




5


, and


14




6


designate slits provided in one of the long sides of the skirt portion


5


S;


14




7


,


14




8


,


14




9


,


14




10


,


14




11


, and


14




12


designate slits provided in the other of the long sides of the skirt portion


5


S; reference numerals


15




1


,


15




2


,


15




3


, and


15




4


designate slits provided in one of the short sides of the skirt portion


5


S; reference numerals


15




5


,


15




6


,


15




7


, and


15




8


designate slits provided in the other of the short sides of the skirt portion


5


S; reference numerals


16




1


,


16




2


,


16




3


,


16




4


,


16




5


, and


16




6


designate embossments provided in the one of the long sides of the skirt portion


5


S; reference numerals


16




7


,


16




8


,


16




9


,


16




10


,


16




11


, and


16




12


designate embossments provided in the other of the long sides of the skirt portion


5


S; reference numerals


17




1


,


17




2


,


17




3


, and


17




4


designate embossments provided in the one of the short sides of the skirt portion


5


S; and reference numerals


17




5


,


17




6


,


17




7


, and


17




8


designate embossments provided in the other of the short sides of the skirt portion


5


S. The same constituent elements as those shown in

FIG. 1

are indicated by the same reference numerals. X marks designate welds; L


V


a straight line passing through the centers of the long sides, and L


H


a straight line passing through the centers of the short sides.




The shadow mask


5


comprises an apertured portion


5


U in the form of a curved contour provided with a multiplicity of electron-transmissive apertures, an imperforate portion


5


N in the form of a curved contour in the periphery and integral with the apertured portion


5


U, and a skirt portion


5


S bent back from a periphery of the imperforate portion


5


N. The slits


14




1


to


14




12


and


15




1


to


15




8


are of the shape of a generally inverted u slit having a depth of about half of a height of the skirt portion


5


S, measured from the rear or lower end of the skirt portion


5


S, and the embossments


16




1


to


16




12


and


17




1


to


17




8


are arcuate in cross section, protrude inwardly from the skirt portion


5


S and extend along the entire height of the skirt portion


5


S.




The skirt portion


5


S in each of the long sides of the shadow mask


5


are provided with welds near and on opposite sides of a straight line L


V


passing through the centers of the long sides as indicated by x marks in FIG.


2


B. In the skirt portion


5


S in the one of the long sides, three slits


14




1


to


14




3


and three embossments


16




1


to


16




3


are provided on one side of the center line L


V


, and three slits


14




4


to


14




6


and three embossments


16




4


to


16




6


are provided on the other side of the center line L


V


. In the skirt portion


5


S in the other of the long sides, three slits


14




7


to


14




9


and three embossments


16




7


to


16




9


are provided on one side of the center line L


V


, and three slits


14




10


to


14




12


and three embossments


16




10


to


16




12


are provided on the other side of the center line L


V


.




Further, the skirt portion


5


S in each of the short sides of the shadow ask


5


are provided with welds near and on opposite sides of a straight line L


H


passing through the centers of the short sides as indicated by x marks in FIG.


2


C. In the skirt portion


5


S in the one of the short sides, two slits


15




1


and


15




2


and two embossments


17




1


and


17




2


are provided on one side of the center line L


H


and two slits


15




3


and


15




4


and two embossments


17




3


and


17




4


are provided on the other side of the center line L


H


. In the skirt portion in the other of the short sides, two slits


15




5


and


15




6


and two embossments


17




5


and


17




6


are provided on one side of the center L


H


and two slits


15




7


and


15




8


and two embossments


17




7


and


17




8


are provided on the other side of the center line L


H


.




For example, in the case where the outside diagonal dimension of the panel portion of the color cathode ray tube is 19 inches, and the dimensions of the apertured portion


5


U of the shadow mask


5


are about 365 mm in width and about 275 mm in height, the dimensions and positions of the slits


14




1


to


14




12


and


15




1


to


15




6


and the embossments


16




1


to


16




12


and


17




1


to


17




6


are as follows:




In

FIG. 2D

, for the dimensions of the slits


14




1


to


14




12


and


15




1


to


15




8


, the slit width SLW is about 3 mm and the slit depth SLD is 6.5 mm, and for the dimensions of the embossments


16




1


to


16




12


and


17




1


to


17




6


, the width ENW is about 6 mm, the depth EMD is 0.8 mm, and the height EMH is the same as the skirt height SK as shown in

FIGS. 2A and 2B

(however, in

FIG. 2D

, for generalization, the height EMH is depicted to be smaller than the skirt height SK).




In the skirt portion


5


S in one of the long sides of the shadow mask, two slits


14




3


and


14




4


are adjacent to and spaced about 25 mm from the center line L


V


, respectively and each of distances between two adjacent slits,


14




1


and


14




2


;


14




2


and


14




3


;


14




4


and


14




5


; and


14




5


and


14




6


is about 50 mm. In the skirt portion


5


S in the other of the long sides of the shadow mask two slits


14




9


and


14




10


are adjacent to and spaced about 25 mm from the center line L


V


, respectively and each of distances between two adjacent slits,


14




7


and


14




8


;


14




8


and


14




9


;


14




10


and


14




11


; and


14




11


and


14




12


is about 50 mm. In the skirt portion


5


S in one of the short sides of the shadow mask, two slits


15




2


and


15




3


are adjacent to and spaced about 25 mm from the center line L


H


, respectively and each of distances between two adjacent slits,


15




1


and


15




2


; and


15




3


and


15




4


is about 50 mm. In the skirt portion


5


S in the other of the short sides of the shadow ask two slits


15




6


and


15




7


are adjacent to and spaced about 25 mm from the center line L


H


, respectively and each of distances between two adjacent slits,


15




5


and


15




6


; and


15




7


and


15




8


, is about 50 mm.




In the skirt portion


5


S in one of the long sides of the shadow mask, two embossments


16




3


and


16




4


are adjacent to and spaced about 50 mm from the center line L


V


, respectively and each of distances between two adjacent slits,


16




1


and


16




2


;


16




2


and


16




3


;


16




4


and


16




5


; and


16




5


and


16




6


is about 50 mm. In the skirt portion


5


S in the other of the long sides of the shadow ask two embossments


16




9


and


16




10


are adjacent to and spaced about 50 m from the center line L


V


, respectively and each of distances between two adjacent slits,


16




7


and


16




8


;


16




8


and


16




9


;


16




10


and


16




11


; and


16




11


and


16




12


is about 50 mm. In the skirt portion


5


S in one of the short sides of the shadow mask, two embossments


17




2


and


17




3


are adjacent to and spaced about 50 mm from the center line L


H


, respectively and each of distances between two adjacent embossments,


17




1


and


17




2


; and


17




3


and


17




4


is about 50 mm. In the skirt portion


5


S in the other of the short sides of the shadow mask the embossments


17




6


and


17




7


are adjacent to and spaced about 50 mm from the center line L


H


, respectively and each of distances between two embossments,


17




5


and


17




6


; and


17




7


and


17




8


is about 50 mm.




As described above, the slits


14




1


to


14




12


and the embossments


16




1


to


16




12


are arranged such that they are alternately positioned on the opposite sides of the center line L


V


, in the skirt portion


5


S in the long sides of the shadow mask, and similarly, the slits


15




1


to


15




8


and the embossments


17




1


to


17




8


are arranged such that they are alternately positioned on the opposite sides of the center line L


H


in the skirt portion


5


S in the short sides of the shadow mask.




In this case, the slits


14




1


to


14




12


and the embossments


16




1


to


16




12


of the skirt portion


5


S are formed at the same time the shadow mask


5


is press-formed from a thin-sheet metal blank to provide the skirt portion


5


S.




By virtue of this arrangement of the shadow mask


5


in the present embodiment, since the slits


14




1


to


14




12


and the embossments


16




1


to


16




12


are formed in the skirt portion


5


S when the shadow mask


5


is press-formed from a thin-sheet metal blank to provide the skirt portion


5


S, the curl S of the shadow mask


5


can be limited within a predetermined value smaller than that in the conventional shadow mask along the entire periphery of the skirt portion


5


S. Since the curl S of the skirt portion


5


S of the shadow mask


5


of the present invention is small, in the operation of affixing the skirt portion


5


S to the inside of the support frame


6


, fitting of the skirt portion


5


S into the support frame


6


and welding of the fitted skirt portion


5


S and the support frame


6


are facilitated, and this improves workability in affixing the skirt portion


5


S to the support frame


6


.




When a shadow mask


5


with excessively large curls is forcibly fitted within a support frame


6


, the skirt portion


5


S of the shadow ask


5


is deflected to such an excessive extent toward the interior of the shadow mask that the curved portion


5


U of the shadow mask is locally depressed, and landing error of an electron beam increases and latitude of color purity decreases, resulting in degradation of color display quality.




It is preferable to reduce the maximum curl of more than 4 mm in conventional shadow masks to less than the maximum of about 2.5 mm. If the slit depth SLD (

FIG. 2D

) is too large, e.g., larger than 70% of the height SK of the skirt portion, distortions like creases my occur in the useful apertured portion


5


U when the shadow mask is fitted within the support frame. Embossments


16


and


17


of an inappropriate height, width or depth increase rigidity of the skirt portion


5


S to such an excessive extent as to distort the useful apertured portion


5


U.





FIG. 5

shows a relationship between the amount S of curls and the slit depth SLD/skirt height SK % in shadow masks with slits only and shadow masks with slits and embossments, wherein the skirt height SK is 17 mm. The remainder of dimensions of the shadow asks are the same as in the above embodiment. The slit depth SLD larger than 38% of the skirt height SK limits the maximum curl to smaller than 2.5 mm in the shadow masks having the slits and embossments. It is understood from

FIG. 5

that a combination of slits and embossments considerably suppresses the amount of curls as compared with shadow masks provided with slits only.




Since the skirt portion


5


S of the shadow mask


5


according to the present embodiment can be easily affixed to the support frame


6


, the stress caused to the skirt portion


5


S fitted in the support frame is so small that the stress is not transmitted to the apertured portion


5


U through the imperforate portion


5


N. Therefore, the curved contour of the apertured portion


5


U is not distorted, and the strength of the shadow mask


5


is not reduced.





FIGS. 3A

to


3


C are respectively structural views showing a second embodiment of a shadow mask used for the color cathode ray tube shown in

FIG. 1

,

FIG. 3A

being a top view thereof,

FIG. 3B

being a side view of a long side thereof,

FIG. 3C

being a side view of a short side thereof.




In

FIGS. 3A

to


3


C, reference numerals


16




13


and


16




14


designate embossments provided on a straight line L


V


passing through the centers of the two long sides of the skirt portion


5


S, and reference numerals


17




9


and


17




10


designate embossments provided on a straight line L


H


passing through the centers of the two short sides of the skirt portion


5


S. The same constituent elements as those shown in

FIGS. 2A

to


2


D are indicated by the same reference numerals. The enlarged view of the slits and the embossments in the present embodiment is similar to FIG.


2


D.




The second embodiment is the same in construction as that of the first embodiment except that the second embodiment is provided with the embossments


16




13


and


16




14


on the line L


V


passing through the centers of the long sides and the embossments


17




9


and


17




10


on the line L


H


passing through the centers of the short sides, and the number of the embossments,


7


and


5


, in the long side and the short side, respectively, comprising the embossments


16




1


to


16




14


and


17




1


to


17




10


, is larger by one than the number of the slits,


6


and


4


, in the long side and short side, respectively, comprising the slits


14




1


to


14




12


and


15




1


to


15




8


, while the first embodiment is not provided with the embossments


16




13


and


16




14


,


17




9


and


17




10


on the center lines, the number of the embossments,


6


and


4


, in the long side and the short side, respectively, comprising the embossments


16




1


to


16




12


and


17




1


to


17




8


, is the same as the number of the slits,


6


and


4


, in the long side and the short side, respectively, comprising the slits


14




1


to


14




12


and


15




1


to


15




8


. Therefore, the construction of the shadow mask


5


in the second embodiment will not be explained further.




Further, the operation, the function and the effects resulting from the operation of the second embodiment are generally the same as those of the first embodiment, and those of the second embodiment will not be explained further.




While in the above embodiments, the number of the slits (


14




1


to


14




12


and


15




1


to


15




8


) and the spacing therebetween provided in the skirt portion


5


S and the number of the embossments (


16




1


to


16




12


and


17




1


to


17




8


) and the spacing therebetween have been specifically explained, the number and the spacing are merely mentioned by way of examples in the embodiments, and the number of the slits and the embossments and the spacing therebetween can be properly determined in each case. That is, the spacing between the center line L


V


of the long sides and the slits adjacent thereto, and the spacing between the center line L


H


of the short sides and the slits adjacent thereto can be respectively chosen within the range of 20 to 30 mm, and the spacing between two adjacent slits and the spacing between two adjacent embossments can be respectively chosen within the range of 40 to 60 mm.




While, in the above embodiments, the shadow masks


5


used for a color cathode ray tube having a 19-inch outside diagonal panel portion have been taken as examples, the shadow mask


5


of the present invention is not limited to application of tubes having a 19-inch outside diagonal panel portion, but can be similarly applied to cathode ray tubes having a panel portion of other outside diagonal dimension.




While, in the above embodiments, the embossments protrude inwardly, the present invention is not limited thereto, but they can protrude outwardly to provide the similar function and effects. An embodiment corresponding to the first embodiment and another embodiment corresponding to the second embodiment are shown in

FIGS. 6A

to


6


D and

FIGS. 7A

to


7


C, respectively. The details of the embossments and slits are shown in FIG.


6


D. These modification of the shadow mask


5


is fitted outside the support frame


6


as shown in FIG.


8


.




While, in the above embodiments, the embossments are arcuate in cross section, the present invention is not limited thereto, but they can be rectangular in cross section and protrude inwardly or outwardly as shown in

FIGS. 9A and 9B

, respectively, to provide the similar function and effects.




The results from various experiments similar to the above embodiments are summarized as follows:




(1) It is preferable to distribute slits and embossments over each of central portions extending a distance PHL and extending a distance PVL in length of long and short sides of the skirt portion, respectively, (see

FIGS. 2B

,


2


C,


3


B,


3


B,


6


B,


6


C,


7


B and


7


C) wherein PHL and PVL satisfy the following inequalities:






0.5


HL≦PHL≦


0.85


HL










0.5


VL≦PVL≦


0.85


VL








where HL and VL are longitudinal lengths of the long and short sides of the skirt portion, respectively (see

FIGS. 2B

,


2


C,


3


B,


3


C,


6


B,


6


C,


7


B, and


7


C).




(2) It is preferable that slits and embossments are 2 to 10 and 2 to 15 in number, respectively, in each of the above-mentioned central portions (PHL, PVL) (see

FIGS. 2A

,


2


B,


2


C,


3


A,


3


B,


3


C,


6


A,


6


B,


6


C,


7


B, and


7


C).




(3) It is preferable that slits extend a distance SLD of 30 to 70% of the height SK of the skirt portion from a rear end thereof as shown in

FIG. 5

(see

FIGS. 2D

,


6


D,


9


A and


9


B).




(4) It is preferable that a width SLW of slits is 25 to 50% of a longitudinal length SLD thereof (see

FIGS. 2D

,


6


D,


9


A and


9


B).




(5) It is preferable that embossments extend a distance EMH of 80 to 100% of the height SK of the skirt portion (see

FIGS. 2D

,


6


D,


9


A and


9


B).




(6) It is preferable that a cross section of embossments is 2 to 15 m (EMW) measured along a side of the skirt portion having the embossments and 0.2 to 1.0 mm (EMD) measured perpendicular to the side of the skirt portion (see

FIGS. 2D

,


6


D,


9


A and


9


B).




(7) It is preferable that, when a pair of slits are disposed at a central portion of 2 to 20% of the longitudinal length (HL, VL) of each of long and short sides of the skirt portion, the remainder of the slits are spaced a distance of 10 to 70 mm from each other (see

FIGS. 2A

to


2


C,


3


A to


3


C,


6


A to


6


C, and


7


A to


7


C).




(8) It is preferable that, when a pair of embossments are disposed at a central portion of 5 to 50% of the longitudinal length (HL, VL) of each of long and short sides of the skirt portion, the remainder of the embossments are spaced a distance of 5 to 70 mm from each other (see

FIGS. 2A

to


2


C,


3


A to


3


C,


6


A to


6


C, and


7


A to


7


C).




(9) It is preferable that, when one embossment is disposed at a midpoint of each of long and short sides of the skirt portion, the reminder of the embossments are spaced a distance of 10 to 70 mm from each other (see

FIGS. 3A

to


3


C and


7


A to


7


C).




(10) It is preferable that, when a pair of embossments are disposed at a central portion of 3 to 20% of the longitudinal length (HL, VL) of each of long and short sides of the skirt portion, embossments are spaced a distance of 5 to 35 mm from adjacent ones of slits in a portion excluding the central portion of 3 to 20% of the longitudinal length (see

FIGS. 2A

to


2


C,


3


A to


3


C,


6


A to


6


C, and


7


A to


7


C).




(11) It is preferable that embossments are spaced a distance of 5 to 35 mm from adjacent ones of slits (see

FIGS. 2A

to


2


C,


3


A to


3


C,


6


A to


6


C, and


7


A to


7


C).




(12) It is preferable that zero to four of embossments are disposed between two adjacent ones of slits (see

FIGS. 2A

to


2


C,


3


A to


3


C,


6


A to


6


C, and


7


A to


7


C).




As described above, according to the present invention, a plurality of slits and a plurality of embossments are formed to be juxtaposed over a wide region of each of long and short sides of the skirt portion in the same operation used for press-forming the skirt portion. This reduces significantly the tendency of the press-formed skirt portion to return to its initial form, reduces the curl S produced in the skirt portion, and limits the curl S within a relatively small range over the entire periphery of the skirt portion.




Further, according to the present invention, the stress caused to the skirt portion by fitting the skirt portion in the support frame is not transmitted to the imperforate portion or the apertured portion so that the curved contour of the apertured portion of the shadow ask is not distorted, and consequently the color selection property of the shadow mask is not deteriorated, or the strength of the shadow mask is not reduced.



Claims
  • 1. A color cathode ray tube including a generally rectangular shadow mask with at least a long side, a short side and a corner, and having a curved apertured portion with a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with said apertured portion and a skirt portion bent back from a periphery of said curved imperforate portion, and a generally rectangular support frame for suspending said shadow mask by spot welding said skirt portion thereto, within a panel portion of said color cathode ray tube;said skirt portion being provided with a plurality of slits extending in a direction of a height of said skirt portion and a plurality of embossments extending in the direction of the height of said skirt portion in one of a long side and a short side of said skirt portion; and said plurality of slits and said plurality of embossments being juxtaposed around a circumference of said skirt portion, and a majority of said plurality of slits in said one of said long side and said short side of said skirt portion being slits delimiting continuous openings in said skirt portion which are not bridged by members other than said generally rectangular support frame.
  • 2. A color cathode ray tube according to claim 1, wherein said skirt portion is provided with said plurality of slits extending in the direction of the height of said skirt portion and the plurality of embossments extending in the direction of the height of said skirt portion in both said long side and said short side of said skirt portion.
  • 3. A color cathode ray tube according to claim 1, wherein said slits exist at at least 25 mm apart from a center of one of said long side and said short side of said skirt portion.
  • 4. A color cathode ray tube according to claim 1, wherein said slits exist at at least 75 mm apart from a center of said long side of said skirt portion.
  • 5. A color cathode ray tube according to claim 1, wherein said slits exist at at least 25 mm apart from a center of said short side of said skirt portion.
  • 6. A color cathode ray tube according to claim 1, wherein said slits exist at at least 75 mm apart from a center of said short side of said skirt portion.
  • 7. A color cathode ray tube according to claim 1, wherein said embossments exist at at least 50 mm apart from a center of said long side of said skirt portion.
  • 8. A color cathode ray tube according to claim 1, wherein said embossments exist at at least 50 mm apart from a center of said short side of said skirt portion.
  • 9. A color cathode ray tube according to claim 1, wherein two of said plurality of embossments are spaced by a distance of 10 mm to 70 mm.
  • 10. A color cathode ray tube according to claim 1, wherein two of said plurality of embossments are spaced by a distance of 40 mm to 60 mm.
  • 11. A color cathode ray tube according to claim 1, wherein said embossments exist at a center of said long side of said skirt portion.
  • 12. A color cathode ray tube according to claim 1, wherein said embossments exist at a center of said short side of said skirt portion.
  • 13. A color cathode ray tube according to claim 1, wherein a distance between one of said plurality of slits and one of said plurality of embossments is 5 mm to 35 mm.
  • 14. A color cathode ray tube according to claim 2, wherein a distance between one of said plurality of slits and one of said plurality of embossments is 5 mm to 35 mm.
  • 15. A color cathode ray tube according to claim 11, wherein a distance between one of said plurality of slits and one of said plurality of embossments is 5 mm to 35 mm.
  • 16. A color cathode ray tube according to claim 12, wherein a distance between one of said plurality of slits and one of said plurality of embossments is 5 mm to 35 mm.
  • 17. A color cathode ray tube according to claim 1, wherein a plurality of said slits extend a distance of no greater than 70% of the height of said skirt portion from a rear end of said skirt portion on an opposite side thereof from said panel portion.
  • 18. A color cathode ray tube according to claim 1, wherein said plurality of slits extend a distance no greater than 50% of the height of said skirt portion from a rear end of said skirt portion on an opposite side thereof from said panel portion.
  • 19. A color cathode ray tube according to claim 1, wherein said plurality of embossments extend an entire distance of the height of said skirt portion.
  • 20. A color cathode ray tube according to claim 1, wherein said plurality of embossments are arcuate in cross section.
  • 21. A color cathode ray tube according to claim 1, wherein a cross section of said plurality of embossments has a dimension of 0.2 mm to 1.0 mm in a direction perpendicular to said skirt portion.
  • 22. A color cathode ray tube according to claim 1, wherein said plurality of embossments protrude inwardly.
  • 23. A color cathode ray tube including a generally rectangular shadow mask with a long side, a short side and a corner, and having a curved apertured portion with a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with said apertured portion and a skirt portion bent back from a periphery of said curved imperforate portion, and a generally rectangular support frame for suspending said shadow mask by spot welding said skirt portion thereto, within a panel portion of said color cathode ray tube;said skirt portion being provided with a plurality of slits extending in a direction of a height of said skirt portion and a plurality of embossments extending in the direction of the height of said skirt portion in one of a long side and a short side of said skirt portion; and said plurality of slits and said plurality of embossments being juxtaposed around a circumference of said skirt portion, and said plurality of slits extending a distance no greater than 70% of the height of said skirt portion from a rear end of said skirt portion on an opposite side thereof from said panel portion.
  • 24. A color cathode ray tube according to claim 23, wherein said skirt portion is provided with said plurality of slits extending in the direction of the height of said skirt portion and said plurality of embossments extending in the direction of the height of said skirt portion in both said long side and said short side of said skirt portion.
  • 25. A color cathode ray tube according to claim 23, wherein said slits exist at at least 25 mm apart from a center of one of said long side and said short side of said skirt portion.
  • 26. A color cathode ray tube according to claim 23, wherein said slits exist at at least 75 mm apart from a center of one of said long side and said short side of said skirt portion.
  • 27. A color cathode ray tube according to claim 23, wherein said embossments exist at at least 50 mm apart from a center of one of said long side and said short side of said skirt portion.
  • 28. A color cathode ray tube according to claim 23, wherein two of said plurality of embossments are spaced by a distance of 10 mm to 70 mm.
  • 29. A color cathode ray tube according to claim 23, wherein two of said plurality of embossments are spaced by a distance of 40 mm to 60 mm.
  • 30. A color cathode ray tube according to claim 23, wherein said embossments exist at a center of one of said long side and said short side of said skirt portion.
  • 31. A color cathode ray tube according to claim 23, wherein a distance between one of said plurality of slits and one of said plurality of embossments is 5 mm to 35 mm.
  • 32. A color cathode ray tube according to claim 24, wherein a distance between one of said plurality of slits and one of said plurality of embossments is 5 mm to 35 mm.
  • 33. A color cathode ray tube according to claim 30, wherein a distance between one of said plurality of slits and one of said plurality of embossments is 5 mm to 35 mm.
  • 34. A color cathode ray tube according to claim 23, wherein said plurality of slits extend a distance of no greater than 50% of the height of said skirt portion from a rear end of said skirt portion on an opposite side thereof from said panel portion.
  • 35. A color cathode ray tube according to claim 23, wherein said plurality of embossments extend an entire distance of the height of said skirt portion.
  • 36. A color cathode ray tube according to claim 23, wherein said plurality of embossments are arcuate in cross section.
  • 37. A color cathode ray tube according to claim 23, wherein said cross section of said plurality of embossments has a dimension of 0.2 mm to 1.0 mm in a direction perpendicular to said skirt portion.
  • 38. A color cathode ray tube according to claim 23, wherein said plurality of embossments protrude inwardly.
Priority Claims (1)
Number Date Country Kind
9-056286 Mar 1997 JP
CROSS REFERENCE TO RELATED APPLICATION

This is a continuation of U.S. application Ser. No. 09/035,896, filed Mar. 6, 1998, now U.S. Pat. No. 6,111,346 the subject matter of which is incorporated by reference herein.

US Referenced Citations (13)
Number Name Date Kind
3351996 Fiore Nov 1967
3585431 Long Jun 1971
3855493 Snook et al. Dec 1974
3862448 Ishizuka et al. Jan 1975
3878427 Godfrey Apr 1975
3912963 Sedivy Oct 1975
4122368 Masterton Oct 1978
4146816 Morrell Mar 1979
4327307 Penird et al. Apr 1982
4437036 Ragland, Jr. Mar 1984
4949009 Iwamoto Aug 1990
5576595 Inoue Nov 1996
6111346 Ito et al. Aug 2000
Foreign Referenced Citations (3)
Number Date Country
3-76352 Jul 1991 JP
4-155730 May 1992 JP
8-298078 Nov 1996 JP
Continuations (1)
Number Date Country
Parent 09/035896 Mar 1998 US
Child 09/504885 US