1. Field of the Invention
The present invention relates in general to the field of electronics, and more specifically to a lighting system with color compensation for electronic light sources that responds to changing dim levels and changing temperature.
2. Description of the Related Art
Electronic light sources, such as light emitting diodes (LEDs), offer lower energy consumption and, in some instances, longer useful life relative to incandescent bulbs. In some instances, lamps with LEDs are designed to approximate the familiar color characteristics of incandescent bulbs. LEDs with different color spectra can be mixed within a lamp to approximate the color of an incandescent bulb. The color spectrum (e.g. the dominant wavelength) and brightness (i.e. luminosity) of an LED is a function of the junction temperature of the LED. Thus, as the junction temperature changes, the color of the LEDs can also change. The color spectrum of some LEDs varies with the junction temperatures of the LEDs more than others. For example, the brightness of blue-white LEDs varies less with temperature than that of red-amber LEDs. When the brightness from a mix of multi-colored LEDs changes, especially, when the brightness of one color changes more with respect to another color, the changing brightness causes the perceived color of the mix of the LEDs to change. Thus, to maintain a constant color of a group of LEDs, circuits have been developed to maintain a constant color as the junction temperature changes by adjusting the currents to counteract the changes induced by temperature.
The color of a light source, such as an LED, is often referenced as a “correlated color temperature” (CCT) or as a “color spectrum”. The CCT of a light source is the temperature of an ideal black-body radiator that radiates light that is perceived as the same color as the light source. The color spectrum of a light source refers to the distribution of wavelengths of light emitted by the light source. Both CCT and color spectrum represent characteristics to classify the color of a light source.
The lighting system 100 receives an AC supply voltage VIN from voltage supply 106. The supply voltage VSUPPLY is, for example, a nominally 60 Hz/110 V line voltage in the United States of America or a nominally 50 Hz/220 V line voltage in Europe and the People's Republic of China. The full-bridge diode rectifier 105 rectifies the supply voltage VSUPPLY for input to switching power converter 110. Controller 112 controls the switching power converter 110 to generate a light source current iLS. Capacitors 120 and 122 each provide a standard filter across respective LEDs 102 and LEDs 104.
The current distributor 114 controls the current dividers 116 and 118 to respectively apportion the light source current iLS as iLED
The lamp 101 includes a negative temperature coefficient (NTC) resistor 117 to allow the current distributor 114 to sense the ambient temperature in proximity to LEDS 102 and LEDs 104. The resistance of NTC resistor 117 is indirectly proportional to changes in the ambient temperature. Changes in the value of TDATA associated with changes in the resistance of the NTC resistor 117 represent changes in the ambient temperature. Thus, by determining the value of TDATA, the current distributor 114 senses changes in the ambient temperature in proximity to LEDs 102 and LEDs 104.
The spectrum of red-amber LEDs 102 is more sensitive to junction temperature changes than the blue-white LEDs 104. As the ambient temperature in proximity to LEDs 102 and LEDs 104 changes, the junction temperatures also change. Sensing the ambient temperature in proximity to LEDs 102 and LEDs 104 represents an indirect mechanism for sensing changes in the junction temperatures of LEDs 102 and LEDs 104. Thus, sensing the ambient temperature approximates sensing the respective color spectrum of LEDS 102 and LEDs 104. Accordingly, as the ambient temperature changes, the current distributor 114 adjusts the currents iLED
However, the lighting system 100 relies on analog components to maintain the approximately constant color spectrum of lamp 101. Analog components are subject to variations due to temperature and fabrication tolerances and tend to limit the accuracy of the system. Furthermore, many lighting systems include dimmers to dim lamps. The dimmers set a particular dim level by, for example, modulating a phase angle of a supply voltage. It would be desirable to dynamically respond to changes in both the dim level and temperature in a multi-LED lighting system.
In one embodiment of the present invention, a lighting system includes a controller capable of controlling a first current to a first set of one or more electronic light sources and controlling a second current to a second set of one or more electronic light sources. Control of the first current by the controller is jointly dependent on a dim level and a temperature in the lighting system. Control of the second current by the controller is dependent on the dim level in the lighting system. The first set of one or more electronic light sources has a first correlated color temperature (CCT), and the second set of one or more electronic light sources has a second CCT.
In another embodiment of the present invention, a method includes controlling a first current to a first set of one or more electronic light sources and controlling a second current to a second set of one or more electronic light sources. Control of the first current by the controller is jointly dependent on a dim level and a temperature in the lighting system. Control of the second current by the controller is dependent on the dim level in the lighting system. The first set of one or more electronic light sources has a first correlated color temperature (CCT), and the second set of one or more electronic light sources has a second CCT.
In a further embodiment of the present invention, an apparatus includes means for controlling a first current to a first set of one or more electronic light sources and controlling a second current to a second set of one or more electronic light sources. Control of the first current by the controller is jointly dependent on a dim level and a temperature in the lighting system. Control of the second current by the controller is dependent on the dim level in the lighting system. The first set of one or more electronic light sources has a first correlated color temperature (CCT), and the second set of one or more electronic light sources has a second CCT.
The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.
A lighting system includes one or more methods and systems to control the color spectrum and, in at least one embodiment, luminosity, of a lamp in response to both temperature and dim levels. In at least one embodiment, the lighting system includes a controller to control a correlated color temperature (CCT) and intensity of the lamp by independently adjusting currents to electronic light sources based on a dim level of the lighting system and temperature of the lighting system. In at least one embodiment, the controller controls the CCT and intensity based on either information computed in a digital signal processor and/or stored in a memory. In at least one embodiment, the controller is capable of controlling a first current to a first set of one or more electronic light sources, such as one or more light emitting diodes (LEDs), and controlling a second current to a second set of one or more electronic light sources, such as one or more LEDs. The control of the first current by the controller is jointly dependent on a dim level and temperature in the lighting system. For example, in at least one embodiment, the current, the dim level, and the temperature are all jointly dependent, and the controller utilizes a function that directly or indirectly relates the current, the dim level, and the temperature to control the first current. In at least one embodiment, the control of the second current is dependent on the dim level or the dim level and temperature.
In at least one embodiment, the function is a polynomial approximation of a surface that represents the joint dependency of the first current (including a parameter related to the first current, such as current gain), the ambient temperature in the lamp, and a dim level set for the lighting system. In at least one embodiment, the CCT of the second set of electronic light sources is less dependent upon temperature, and the controller utilizes a function that directly or indirectly relates the current and the dim level in the lighting system. In at least one embodiment, the function to determine the second current is a polynomial approximation of a line curve that represents an approximation of the second current (including a parameter related to the second current, such as current gain) and the dim level set for the lighting system. In at least one embodiment, the coefficients of the polynomial functions are programmable and stored in a non-volatile memory. The coefficients can also be fixed. In at least one embodiment, the values of the first current (or a parameter representing the first current) are pre-calculated based on the joint dependency of the first current on the dim level and temperature. In at least one embodiment, the values of the second current are also pre-calculated based on the dependency of the second current on the dim level. The pre-calculated values of the first and second currents can be stored in a memory in a desired format, such as in a look-up-table. In at least one embodiment, some of the first current and/or second current values are pre-calculated and stored in a memory, and the controller determines other first current and/or second current values using the respective functions based on respectively jointly dependent dim level and temperature for the first current and dim level (or dim level and temperature) for the second current.
In at least one embodiment, the first set of one or more electronic light sources has a first CCT and the second set of one or more electronic light sources has a second CCT. The particular CCT's are a matter of design choice. In at least one embodiment, the first CCT is red-amber, and the second CCT is blue-white. Additionally, the number of sets of electronic light sources is a matter of design choice. Thus, the lighting system can include any number of sets of electronic light sources, such as LEDs, having any combination of CCT's.
The CCT and dim level controller 202 also responds to the dim level represented by the signal DIM_LEVEL by lowering the intensity of light from light engine 204. To lower the intensity of the light, the CCT and dim level controller 202 reduces one or more of light source currents iLS
In at least one embodiment, the CCT and dim level controller 202 generates control signal(s) CS_ILS to control the currents iLS
The manner of generating the control signal(s) CS_ILS is a matter of design choice. As subsequently described in more detail, in at least one embodiment, CCT and dim level controller 202 determines each current iLS
As subsequently discussed in more detail, in at least one embodiment, the CCT and dim level controller 202 determines the light source current iLS
In at least one embodiment, the CCT of light source 206.1 is more sensitive to the ambient temperature of the light engine 204 than the remaining light source(s) 206.2-206.N. Thus, in at least one embodiment, by making the light source current iLS
In at least one embodiment, the CCT and dim level controller 202 is part of a larger controller 210. The controller 210 generates P switching power converter control signals CS_SPC. “P” is an integer greater than or equal to 1. U.S. Patent Application Publication 2012/0025733 entitled “Dimming Multiple Lighting Devices by Alternating Energy Transfer From a Magnetic Storage Element”, inventor John L. Melanson, assignee Cirrus Logic, Inc. (referred to herein as “Melanson I”) describes exemplary methods and systems for generating the control signals CS_SPC to control a boost-type switching power converter with a fly-back converter. Melanson I is hereby incorporated by reference in its entirety. The implementation of controller 210 including CCT and dim level controller 202 is a matter of design choice. For example, controller 210 can be implemented as an integrated circuit, discrete components, or as a combination of an integrated circuit and discrete components. Additionally, in at least one embodiment, the controller 210 utilizes software to perform some functions.
In at least one embodiment, the ambient temperature data from the temperature data TEMP is also used by the PFC, voltage regulation controller 318 to provide over temperature protection for light engine 314 by, for example, reducing power delivered to light engine 314.
In at least one embodiment, the dimmer 316 is a phase-cut type dimmer, such as a triac-based dimmer. The dimmer 316 phase cuts the supply voltage VSUPPLY and, thus, the rectified supply voltage Vφ
The processor 312 utilizes the temperature of the light engine 314 and the dim level of the lighting system 300 as represented by the respective TEMP and DIM_LEVEL signals, to generate the control signal CS_iLED_RA to control the current iLED
The values of current iLED
where “T” is the TEMP value in Table 1 corresponding to the NTC code in Table 2, “D” is the dim level DIM_LEVEL, “iREF
As subsequently described in more detail, in at least one embodiment, Equation [1] is a surface that is approximated by a non-linear polynomial. The particular non-linear polynomial is a matter of design choice. Equation [3] represents an exemplary non-linear polynomial that approximates the first current gain GRA as a jointly dependent function of the ambient temperature NTC codes for TEMP and the dim levels of DIM_LEVEL.
GRA=p00+p10·T+p20·T2+p30·T3·p01·D+p02·D2+p03·D3+p11·T·D+p12·T·D2+p21·T3·D [3].
“p_” represents coefficients for the Equation [3], which are a matter of design choice to approximate the gain GRA. “T” represents the NTC code for the ambient temperature TEMP of light engine 314. “D” represents the dim level value of DIM_LEVEL. In at least one embodiment, once the first current gain GRA is determined in accordance with Equation [3], the processor 312 utilizes the values of the reference current iREF
As subsequently described in more detail, in at least one embodiment, Equation [2] is a line-curve that is also approximated by a non-linear polynomial. The particular non-linear polynomial is a matter of design choice. Equation [4] represents an exemplary non-linear polynomial that approximates the second current gain GBW as a function of the dim levels of DIM_LEVEL.
GBW=p0+p1·D+p2·D2+p3·D3 [4].
“p_” represents coefficients for the Equation [4], which are a matter of design choice to approximate the gain GBW. “D” represents the dim level value of DIM_LEVEL. In at least one embodiment, once the second current gain GBW is determined in accordance with Equation [4], the processor 312 utilizes the values of the reference current iREF
In another embodiment, Equations [1] and [2] include respective gain calibration factors GAIN_CALRA and GAIN_CALBW to calibrate the respective values of iLED
iLED
iLED
In at least one embodiment, the processor 302 utilizes Equations [1] and [2], Equations [5] and [6], or approximations thereof, such as Equations [3] and [4] to determine the currents iLED
Multipliers 406 and 408 multiply the respective gain factors GRA and GBW with the respective reference current values of iREF
In an optional embodiment, processor 400 includes temp limiter 422 and/or dim limiter 424 (shown in dashed lines). If the ambient temperature is too high or too low, in at least one embodiment, the gain approximations determined by Equations [3] and [5] can have an error that is too large. In other words, near the boundaries of Equations [3] and [5], the difference between the gain generated by Equations [3] and [5] and the actual relationship between the gain and the dim level and temperature (Equation [3]) values can be unacceptably large and result in unacceptable gain error and, thus, unacceptable LED current-to-(dim level and temperature) values. The temp limiter 422 sets boundary conditions to prevent the gain error from becoming too large as a result in errors in the approximations of the gain errors at the temperature boundaries. For example, in at least one embodiment, the temp limiter 422 receives the TEMP0 value from ADC 324 and limits the output data TEMP of the temp limiter 422 to a value between a low temperature saturation value and a high temperature saturation value. In at least one embodiment, the low temperature saturation value is between −5° C. and +15° C., such as +10° C. In at least one embodiment, the high temperature saturation value is between 100° C. and 130° C., such as 120° C.
Similarly, the dim level limiter 424 receives the DIM_LEVEL0 value as the decoded dim level, and the dim level limiter 424 sets boundary conditions to prevent the gain error from becoming too large as a result of errors in the approximations of the gain errors at the dim level boundaries. For example, in at least one embodiment, the dim level limiter 424 receives the DIM_LEVEL0 value and limits the output data DIM_LEVEL of the dim level limiter 422 to a value between a low dim level saturation value and a high dim level saturation value. In at least one embodiment, the low dim level saturation value is between 1% and 10%, such as 2%. In at least one embodiment, the high dim level saturation value is between 90% and 100%. The quantitative values associated with values that are referenced with regard to gain errors that are “unacceptable” and “too large” are matters of design choice.
Changes in the dim level do not appreciably change the color coordinate of a particular LED. Changes in the dim level primarily affect the magnitude of the spectrum of a particular LED. However, changes in the dim level and ambient temperature can appreciably change the spectrum resulting from the mixing of light from LEDs 304 and relocate a coordinate of the open circle 508 which lies along the line joining the coordinates of the closed circles 502 and 504 of the two individual LED groups.
The open circle 508 lies on the intersection of the line between closed circles 502 and 504 and the isotherm line 510. In a UVW coordinate system, the isotherm line 510 is perpendicular to the tangent of the Planckian locus 512. The open circle 508 represents the chromaticity of the lamp 305. Any point on the isotherm line 510 is said to have a CCT equal to the temperature of a black body and chromaticity equal to the u-v coordinates of the point of intersection of curve 512 and isotherm 510.
Thus, a lighting system controls the color spectrum of a lamp in response to both temperature and dim levels. In at least one embodiment, the lighting system includes a controller to control a CCT and intensity of the lamp by independently adjusting currents to electronic light sources based on a dim level of the lighting system and temperature of the lighting system. In at least one embodiment, the controller is capable of controlling a first current to a first set of one or more electronic light sources and controlling a second current to a second set of one or more electronic light sources. The control of the first current by the controller is jointly dependent on a dim level and temperature in the lighting system. In at least one embodiment, the control of the second current is dependent on the dim level or the dim level and temperature.
Although embodiments have been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.
This application claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Patent Application No. 61/467,258, filed on Mar. 24, 2011 and U.S. Provisional Patent Application No. 61/532,980, filed on Sep. 9, 2011. U.S. Provisional Patent Application Nos. 61/467,258 and 61/532,980 are incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4409476 | Lofgren et al. | Oct 1983 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6211626 | Lys et al. | Apr 2001 | B1 |
6369525 | Chang et al. | Apr 2002 | B1 |
6441558 | Muthu et al. | Aug 2002 | B1 |
6495964 | Muthu et al. | Dec 2002 | B1 |
6583550 | Iwasa et al. | Jun 2003 | B2 |
6636003 | Rahm et al. | Oct 2003 | B2 |
6688753 | Calon et al. | Feb 2004 | B2 |
6753661 | Muthu et al. | Jun 2004 | B2 |
6756772 | McGinnis | Jun 2004 | B2 |
6788011 | Mueller et al. | Sep 2004 | B2 |
6888322 | Dowling et al. | May 2005 | B2 |
6958920 | Mednik et al. | Oct 2005 | B2 |
6967448 | Morgan et al. | Nov 2005 | B2 |
6975079 | Lys et al. | Dec 2005 | B2 |
7064498 | Dowling et al. | Jun 2006 | B2 |
7079791 | Chang | Jul 2006 | B2 |
7088059 | McKinney et al. | Aug 2006 | B2 |
7116294 | Stopa | Oct 2006 | B2 |
7135824 | Lys et al. | Nov 2006 | B2 |
7213940 | VanDeVen et al. | May 2007 | B1 |
7246919 | Porchia et al. | Jul 2007 | B2 |
7255457 | Ducharme et al. | Aug 2007 | B2 |
7288902 | Melanson | Oct 2007 | B1 |
7375476 | Walker et al. | May 2008 | B2 |
7498753 | McAvoy | Mar 2009 | B2 |
7511437 | Lys et al. | Mar 2009 | B2 |
20020145041 | Muthu et al. | Oct 2002 | A1 |
20040085030 | Laflamme et al. | May 2004 | A1 |
20040169477 | Yanai | Sep 2004 | A1 |
20040212321 | Lys et al. | Oct 2004 | A1 |
20050218838 | Lys | Oct 2005 | A1 |
20050231459 | Furukawa | Oct 2005 | A1 |
20050243022 | Negru | Nov 2005 | A1 |
20050253533 | Lys et al. | Nov 2005 | A1 |
20060023002 | Hara et al. | Feb 2006 | A1 |
20060125420 | Boone et al. | Jun 2006 | A1 |
20060226795 | Walter et al. | Oct 2006 | A1 |
20060232219 | Xu | Oct 2006 | A1 |
20070029946 | Yu et al. | Feb 2007 | A1 |
20070126656 | Huang et al. | Jun 2007 | A1 |
20070211013 | Uehara et al. | Sep 2007 | A1 |
20070262724 | Mednik et al. | Nov 2007 | A1 |
20080012502 | Lys | Jan 2008 | A1 |
20080018261 | Kastner | Jan 2008 | A1 |
20080054815 | Kotikalapoodi et al. | Mar 2008 | A1 |
20080116818 | Shteynbert et al. | May 2008 | A1 |
20080150433 | Tsuchida et al. | Jun 2008 | A1 |
20080224635 | Hayes | Sep 2008 | A1 |
20090184616 | Van De Ven et al. | Jul 2009 | A1 |
20090218960 | Lyons et al. | Sep 2009 | A1 |
20100244707 | Gaines et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1528785 | Apr 2005 | EP |
1842399 | Oct 2007 | EP |
02091805 | Nov 2002 | WO |
02091805 | Nov 2002 | WO |
2006067521 | Jun 2006 | WO |
2006067521 | Jun 2006 | WO |
2007026170 | Mar 2007 | WO |
2007026170 | Mar 2007 | WO |
2008072160 | Jun 2008 | WO |
2011061505 | May 2011 | WO |
2011061505 | May 2011 | WO |
Entry |
---|
Dyble, et al, Impact of Dimming White LEDS: Chromaticity Shifts in High-Power White LED Systems Due to Different Dimming Methods, International Society of OpticalEngineers, 2005, Fifth International Conference on Solid State Lighting, Proceedings of SPIE 5941: 291-299, Troy, NY, USA. |
Color Temperature, www.sizes.com/units/color—temperature.htm, printed Mar. 27, 2007. |
Linear Technology, Triple Output LED Driver, Datasheet LT3496, Linear Technology Corporation, LT 0510 Rev F, 2007, Milpitas, CA, USA. |
Dilouie, Craig, Introducing the LED Driver, Electrical Construction & Maintenance (EC&M), Sep. 1, 2004, ,pp. 28-32, Zing Communications, Inc., Calgary, Alberda, Canada. |
Wikipedia, Light-Emitting Diode, http://en.wikipedia.org/wiki/Light-emitting—diode, printed Mar. 27, 2007. |
Linear Technology, News Release, Triple Output LED Driver Drives Up to 24×500mA Leds & Offers 3,000:1 True Color PWM Dimming, Mar. 24, 2007, Milpitas, CA, USA. |
Ohno, Yoshi, Spectral Design Considerations for White LED Color Rendering, Optical Engineering, vol. 44, Issue 11, Special Section on Solid State Lighting, Nov. 30, 2005, Gaithersburg, MD, USA. |
Chromacity Shifts in High-Power White LED Systems Due toDifferent Dimming Methods, Solid-State Lighting, 2005, pp. 1-2, http://www.lrc.rpi.edu/programs/solidstate/completedprojects.asp?ID=76, printed May 3, 2007. |
Color Temperature, Sizes, Inc., www.sizes.com/units/color—temperature.htm, Oct. 10, 2002, pp. 1-3, printed Mar. 27, 2007. |
Linear Technology, News Release, Data Sheet LT3496,Triple Output LED Driver Drives Up to 24×500mA LEDs & Offers 3,000:1 True Color PWM Dimming, 2007, pp. 1-2, Milpitas, CA, USA. |
C. Dilouie, Introducing the LED Driver, Electrical Construction & Maintenance (EC&M), Sep. 1, 2004, pp. 28-30, Zing Communications, Chicago, IL, USA. |
Wikipedia, Light Emitting Diode, http://er.wikipedia.org/wiki/Light-emiting—diode, Mar. 2007, pp. 1-16, printed Mar. 27, 2007. |
Y. Ohno, Spectral Design Considerations for White LED Color Rendering, Final Manuscript, Optical Engineering, Nov. 30, 005, pp. 1-20, vol. 44, 111302, Special Section on Solid State Lighting, National Institute of Standards and Technology, Gaithersburg, MD, USA. |
Number | Date | Country | |
---|---|---|---|
20120242242 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61467258 | Mar 2011 | US | |
61532980 | Sep 2011 | US |