Color CRT electron gun with progressively reduced electron beam passing aperture size

Information

  • Patent Grant
  • 6815881
  • Patent Number
    6,815,881
  • Date Filed
    Monday, February 11, 2002
    22 years ago
  • Date Issued
    Tuesday, November 9, 2004
    19 years ago
Abstract
An electron gun includes plural aligned charged grids each having an aperture (in a monochrome CRT) or plural apertures (in a color CRT) through which an electron beam (or beams) is directed. The beams emitted by a cathode sequentially transit a beam forming region (BFR), a dynamic focus lens and a main focus lens prior to being incident on the CRT's display screen. The electron beam tends to expand in diameter in the direction of the CRT's display screen. This results in an increase in the focusing effect on the electron beam of the electron gun's grids in proceeding from the BFR toward the display screen where the beam passing apertures in the various grids are of the same size. To increase electron beam focusing sensitivity while reducing the beam's dynamic focus voltage, the beam passing apertures in the gun's dynamic focus lens are provided with progressively reduced size in proceeding toward the electron gun's cathode.
Description




FIELD OF THE INVENTION




This invention relates generally to self-emitting video display devices such as of the cathode ray tube (CRT) type and is particularly directed to a multi-grid electron gun such as used in a CRT having progressively reduced beam passing apertures in its charged grids in proceeding toward the electron gun's cathode(s).




BACKGROUND OF THE INVENTION




In a conventional electron gun such as used in either a monochrome or color CRT, energetic electrons are emitted from a cathode (or cathodes) and are directed to the gun's beam forming region (BFR). The BFR includes the G1 control grid, the G2 screen grid and a portion of a G3 grid in facing relation with the G2 screen grid. The energetic electrons are directed through aligned apertures in these three grids and are thereby formed into a well-defined beam, or beams, having a very small, circular cross section. After transiting the electron gun's BFR, the beams are directed through a focus lens, typically divided into a pre-focus lens and a main focus lens, for focusing the electron beams on a phosphor-bearing display screen of the CRT. The focus lens focuses each of the beams to a small spot on the CRT's display screen, with the beams simultaneously deflected in a raster-like manner at very high speeds to form a video image on the display screen. In the case of a typical color CRT, three electron beams are simultaneously formed, focused, and converged to a single spot on the display screen. The three electron beams are then displaced in unison in a raster-like manner over the display screen in forming a color video image.




The beam passing apertures in the BFR are typically small in size, with the apertures in the electron gun's G1 control grid and G2 screen grid typically on the order of 0.3 mm to 0.8 mm in diameter. The bottom portion of the G3 grid in facing relation with the G2 screen grid includes apertures which are somewhat larger in that they are typically on the order of 1 mm to 2 mm. The top portion of the G3 grid as well as the G4 and subsequent grids, including auxiliary dynamic modulation grids, have larger beam passing apertures which are typically on the order of 4.5 mm to 7.5 mm in diameter for color electron guns. Aperture size increases in proceeding toward the CRT's display screen in the main focusing lens region in color electron guns due to the “common lens” design utilized in this portion of the electron gun. Even larger electron beam passing apertures are typically used in monochrome electron guns.




Up The electrons exiting the BFR are formed into a beam bundle for subsequent focusing by the pre-focus lens and main focus lens to a small spot on the CRT's display screen. After exiting the electron gun's BFR, the diameter of the beam increases continuously as the electrons travel in the direction of the display screen along the gun's Z-axis. The electron beam expands in the R-direction which is transverse to the Z-axis. This electron beam expansion is due to the velocity of electrons along the R-direction, as well as to the space-charge effect in the beam caused by the mutual repulsion between the electrons in the beam.




The beam passing apertures in the various grids in an electron gun are generally of the same diameter. The primary reason for equal sized apertures in each of the gun's charged grids relates to the use of a mandrel in electron gun assembly. A mandrel is inserted through each aligned array of beam passing apertures in the various grids to maintain the grids in common alignment during the beading process in electron gun assembly. The common sized beam passing apertures and the use of a generally cylindrical mandrel for grid alignment greatly simplifies and facilitates electron gun assembly.




As the electron beam expands in diameter after it exits the electron gun's BFR, the focusing effect of each grid in the lens portion of the electron gun, where all of the grids have beam passing apertures of essentially the same size, becomes progressively stronger due to the progressively increasing diameter of the electron beam. Thus, the closer the charged grid is to the CRT's display screen, the stronger is its focusing effect on the electron beam. Conversely, in the area of the BFR as well as in the lower portion of the gun's pre-focus lens region, the charged grids have a reduced focusing effect on the electron beam due to the beam's small diameter in this region. Because of the reduced focusing effect of the grids in this region, a larger dynamic focus voltage is required to correct for astigmatism of the deflected beam's spot size caused by the CRT's inline deflection yoke as well as to correct for out-of-focus effects which arise from the electron beam's increased landing or throw distance. Reducing the dynamic focus voltage required to correct for astigmatism of the deflected beam places increased demands on electron gun design requirements.




The present invention addresses the aforementioned limitations of the prior art by providing progressively reduced electron beam passing aperture size in an electron gun for use in a CRT which increases electron beam focusing sensitivity without increasing beam spot aberration on the CRT's display screen or the out-of-focus effects on the video image. By providing the BFR and pre-focus lens of the electron gun with progressively reduced electron beam passing aperture size in proceeding toward the gun's cathode, increased electron beam focusing sensitivity is provided without increasing dynamic focus voltage or electron beam spot aberration on the display screen.




OBJECTS AND SUMMARY OF THE INVENTION




Accordingly, it is an object of the present invention to provide in an electron gun of a CRT increased electron beam focusing sensitivity for improved video image quality.




It is another object of the present invention to reduce the dynamic voltage is required in the electron gun of a CRT to correct for electron beam astigmatism and out-of-focus effects.




Yet another object of the present invention is to provide for the assembly of a multi-grid color CRT electron gun with charged grids having reduced diameter electron beam passing apertures using a mandrel.




The present invention contemplates an electron gun for use in a cathode ray tube (CRT) for producing a video image on a display screen, the electron gun comprising a cathode for providing energetic electrons; a beam forming region (BFR) aligned with the cathode and disposed intermediate the cathode and the display screen for receiving and forming the energetic electrons into an elongated, narrow beam, the BFR including plural spaced first charged grids each having one or more first aligned apertures, wherein the electrons are directed through the first aligned apertures and the electron beam increases in cross section in proceeding from the BFR toward the display screen; and an electrostatic lens disposed intermediate the BFR and the display screen and including plural spaced second charged grids each having one or more second aligned apertures through which the electron beam is directed for focusing the electron beam on the display screen, wherein the second aligned apertures decrease in size in proceeding in a direction from the display screen toward the BFR for increasing focusing sensitivity of the electrostatic lens on the electron beam.











BRIEF DESCRIPTION OF THE DRAWINGS




The appended claims set forth those novel features which characterize the invention. However, the invention itself, as well as further objects and advantages thereof, will best be understood by reference to the following detailed description of a preferred embodiment taken in conjunction with the accompanying drawings, where like reference characters identify like elements throughout the various figures, in which:





FIG. 1

is a simplified longitudinal sectional view of a quadrupole-type electron gun for use in a CRT having progressively reduced electron beam passing aperture size in accordance with the principles of the present invention;





FIG. 2

is a simplified longitudinal sectional view of one embodiment of a bi-potential electron gun with progressively reduced electron beam passing aperture size in accordance with the present invention;





FIGS. 2



a-




2




d


are sectional views of the bi-potential electron gun of

FIG. 2

taken respectively along sight lines


2




a





2




a


,


2




b





2




b


,


2




c





2




c


and


2




d





2




d


therein;





FIG. 3

is a simplified longitudinal sectional view of another embodiment of a bi-potential electron gun with progressively reduced electron beam passing aperture size in accordance with the present invention;





FIGS. 3



a


-


3




f


are sectional views of the bi-potential electron gun shown in

FIG. 3

taken respectively along sight lines


3




a





3




a


,


3




b





3




b


,


3




c





3




c


,


3




d





3




d


,


3




e





3




e


and


3




f





3




f


therein;





FIG. 4

is a simplified longitudinal sectional view of yet another embodiment of a bi-potential electron gun with progressively reduced electron beam passing aperture size in accordance with the present invention; and





FIGS. 4



a


-


4




e


are sectional views of the bi-potential electron gun shown in

FIG. 4

taken respectively along sight lines


4




a





4




a


,


4




b





4




b


,


4




c





4




c


,


4




d





4




d


and


4




e





4




e


therein;





FIG. 5

is a simplified longitudinal sectional view of still another embodiment of a bi-potential electron gun with progressively reduced electron beam passing aperture size in accordance with the present invention;





FIGS. 5



a


-


5




f


are sectional views of the bi-potential electron gun shown in

FIG. 5

taken respectively along sight lines


5




a





5




a


,


5




b





5




b


,


5




c





5




c


,


5




d





5




d


,


5




e





5




e


and


5




f





5




f


therein; and





FIG. 6

is a perspective view of a portion of the bi-potential electron gun shown in

FIG. 4

illustrating details of the G31 grid, the G32 grid, and the G33 grid.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIG. 1

, there is shown a simplified longitudinal sectional view of a quadrupole-type (QPF) electron gun


10


, but without a dynamic quadrupole, having progressively reduced electron beam passing aperture size in accordance with one embodiment of the present invention. The present invention is applicable to electron guns used in both monochrome and color CRTs. The electron gun


10


shown in

FIG. 1

is thus applicable to both monochrome and color CRTs, it being understood that the electron beam


34


shown in dotted line form in the figure is only one of three beams in a color CRT. In this latter case, the electron gun


10


generates and directs two additional inline electron beams (which are not shown in the figure for simplicity), with one electron beam in spaced relation from the center electron beam


34


into the plane of the sheet and the other electron beam disposed above the plane shown in

FIG. 1

, or toward the reader. Thus, for simplicity, only the center electron beam


34


as well as the aligned beam passing apertures in the various grids through which the electron beam is directed are shown in

FIG. 1

, where the electron gun


10


is a multi-beam electron gun such as used in a color CRT.




Electron gun


10


includes a cathode K for generating energetic electrons and directing these electrons through aligned apertures in a G1 control grid


12


and a G2 screen grid


14


. In the case of a multi-beam electron gun, electron gun


10


further includes two additional cathodes which are not shown in the figure for simplicity, with one of these cathodes disposed below the plane of FIG.


1


and the other cathode disposed above the plane of the figure. While the following discussion is limited to the center electron beam


34


and the grid apertures through which this beam is directed, this discussion is equally applicable to the two outer electron beams in electron gun


10


which as indicated above are not shown in the figure for simplicity.




The electron gun's beam forming region (BFR)


36


is comprised of the G1 control grid


12


, the G2 screen grid


14


, and a lower side of a G3 grid


16


. QPF electron gun


10


further includes a dynamic focus lens


37


comprised of the upper side of the G3 grid


16


, a G4 grid


18


, and the lower side of a G5 grid


20


. The three electron beams, including the center electron beam


34


(shown in the figure in dotted line form), are focused on the display screen


30


by means of a main focus lens


38


comprised of the upper side of the G5 grid


20


and a G6 grid


22


. The G1 grid


12


is typically maintained at zero voltage, while the G2 screen grid


14


and the G4 grid are typically coupled to a common voltage V


G2


source


26


and the G3 and G5 grids


16


,


20


are coupled to a common focus voltage V


F


source


28


. The V


G2


source


26


maintains the G2 screen and G4 grids


14


,


18


at a voltage in the range of 400-750 V. The G6 grid


22


is typically coupled to an accelerating, or anode, voltage source which is not shown in the figure for simplicity. Each of the three electron beams is directed through plural aligned apertures in the various grids of electron gun


10


as the electrons proceed from each respective cathode K toward the CRT's display screen


30


.




As shown in

FIG. 1

, electron beam


34


is directed through the BFR


36


of electron gun


10


in the form of a narrow bundle along the longitudinal axis Z-Z′ of the electron gun. After passing through the electron gun's BFR


36


, the beam, or beams, expand radially because of the beam's space-charge effect and the radial thermal velocity component of the electrons which is perpendicular to the gun's longitudinal axis Z-Z′. The effect of these phenomena is to increase the cross section of the electron beam


34


as it proceeds from the BFR


36


and sequentially through the gun's dynamic focus lens


37


and its main focus lens


38


prior to being incident upon display screen


30


.




In accordance with the present invention, in order to increase the focus sensitivity of the electron gun


10


on the electron beam


34


, the beam passing apertures in the gun's dynamic focus lens


37


are provided with reduced diameter in proceeding toward cathode K. Thus, the aperture


16




a


in the high end of the G3 grid


16


is provided with a diameter d1, while the beam passing aperture


18




a


in the G4 grid is provided with a diameter d2. Finally, the beam passing aperture


20




a


in the low end of the G5 grid


20


is provided with a diameter d3, where d3≧d2≧d1. Thus, in the dynamic focus lens


37


of electron gun


10


the respective beam passing apertures in the low end of the G5 grid


20


, in the G4 grid


18


, and in the high end of the G3 grid


16


are of decreasing diameter to accommodate the reduced diameter of the electron beam


34


in proceeding in the direction of cathode K. This increases the focus sensitivity of the electron gun's dynamic focus lens


37


on electron beam


34


and corrects for beam astigmatism with minimum spherical aberration of the beam.




Also shown in

FIG. 1

in dotted line form is a mandrel


32


inserted through aligned apertures in the electron gun's G1, G2, G3, G4, G5 and G6 grids. In proceeding toward the electron gun's cathode K, mandrel


32


is tapered in a step-wise manner so as to accommodate the reduced diameters of apertures


20




a


,


18




a


and


16




a


,


16




b


respectively disposed in the G5, G4 and G3 grids


20


,


18


and


16


as well as the apertures in the G1 and G2 grids. The distal end of mandrel


32


is tapered in a step-wise manner in proceeding toward the electron gun's cathode K for insertion in a tight-fitting manner in apertures in the G5, G4, G3, G2 and G1 grids for precisely aligning these grids during assembly of electron gun


10


. Once the electron gun


10


is assembled, mandrel


32


is removed from the aligned grid assembly for completion of assembly of the electron gun. In the case of a multi-beam color CRT incorporating three inline electron beams, a mandrel


32


as shown in

FIG. 1

would be inserted through each of the three groups of aligned beam passing apertures for precisely aligning the electron gun's grids during assembly. Each of three such mandrels preferably would be incorporated in an alignment jig used in the assembly of the multi-beam electron gun.




Referring to

FIG. 2

, there is shown a simplified longitudinal sectional view of a bi-potential electron gun


40


incorporating a progressively reduced electron beam passing aperture size in accordance with the principles of the present invention. Bi-potential electron gun


40


includes a cathode K which generates and directs energetic electrons through aligned apertures in a G1 control grid


42


and a G2 screen grid


44


. The electron beam


65


(shown in dotted line form) is then sequentially directed through aligned apertures in a G31 grid


46


, a G32 grid


48


, a G33 grid


50


, and a G4 grid


52


. The electron beam


65


is incident upon the CRT's display screen which is not shown in

FIG. 2

for simplicity. In addition, while

FIG. 2

shows only a single set of aligned apertures in the various charged grids such as in a monochrome CRT, the arrangement shown in

FIG. 2

is also applicable to a color CRT including three inline apertures in each grid, with each aperture adapted for passing a respective electron beam.




The G1 control grid


42


, G2 screen grid


44


and the bottom portion of the G31 grid


46


, i.e., in facing relation to the G2 screen grid, form the electron gun's beam forming region (BFR)


64


. The upper portion of the G31 grid


46


, the G32 grid


48


and the lower portion of the G33 grid


50


form the electron gun's dynamic focus lens


66


. The upper portion of the G33 grid


50


in combination with the G4 grid


52


form the electron gun's main focus lens


68


. A focus voltage E


b


source


62


is coupled to the G4 grid


52


for focusing the electron beams.




A dynamic voltage V


d


source


58


is coupled to the G31 grid


46


and the G33 grid


50


. A fixed voltage V


s


source


60


is connected to the G32 grid


48


. The V


d


source


58


provides a time variable voltage to the G31 and G33 grids


46


,


50


. A fixed voltage is provided to the G32 grid


48


by the V


s


source


60


. The combination of the fixed voltage provided to the G32 grid


48


and time variable voltage provided to the G31 and G33 grids


46


,


50


produces first and second dynamic quadrupoles


54


and


56


(shown in dotted line form in

FIG. 2.

) The first and second dynamic quadrupoles


54


,


56


form a time variable quadrupole lens to compensate for the deflection yoke's astigmatism effect. The first dynamic quadrupole


54


is formed between the top portion of the G32 grid


48


and the bottom portion of the G33 grid


50


. The second dynamic quadrupole


56


is formed between the top portion of the G31 grid


46


and the bottom portion of the G32 grid


48


.




In accordance with the present invention, the first and second dynamic quadrupoles


54


and


56


are disposed in the electron gun's dynamic focus lens


66


. In proceeding toward the electron gun's cathode K, it can be seen that the beam passing aperture


50




a


in the bottom portion of the G33 grid


50


is greater in diameter then the adjacent beam passing aperture


48




b


in the top portion of the G32 grid


48


. Similarly, in the second dynamic quadrupole


56


beam passing aperture


48




a


in the bottom portion of the G32 grid


48


is larger in diameter then the beam passing aperture


46




a


in the top portion of the G31 grid


46


. Thus, in the electron gun's prefocus lens


66


, d4>d3>d2>d1. The decreasing diameters of the beam passing apertures in proceeding in the electron gun's dynamic focus lens


66


toward it's cathode K provides increased focusing sensitivity for electron beam


65


as it expands in diameter in proceeding from the electron gun's cathode K towards the display screen.




Referring to

FIGS. 2



a


-


2




d


, there are shown sectional views of the bi-potential electron gun


40


shown in

FIG. 2

taken respectively along sight lines


2




a





2




a


,


2




b





2




b


,


2




c





2




c


and


2




d





2




d


. As shown in

FIG. 2



a


, the low side of the G33 grid


50


includes an elongated common aperture


50




a


through which the three electron beams are directed in a spaced manner. Disposed along the length of the common aperture


50




a


are three enlarged portions formed by paired circular arcs in the upper and lower edges of the common aperture. Each of the spaced enlarged portions in the common aperture


50




a


is provided with a diameter of d4. Similarly, as shown in

FIG. 2



d


for the high side of the G31 grid


46


, this grid includes an elongated common aperture


46




a


having three spaced enlarged portions through each of which a respective one of the electron beams is directed. Each of the enlarged portions of the common elongated aperture


46




a


has a diameter d1. As shown in

FIG. 2



b


, the high side of the G32 grid


48


is provided with three spaced beam passing apertures each having an enlarged and generally circular inner portion with a diameter d3. Similarly,

FIG. 2



c


shows the low side of the G32 grid


48


as also including three spaced beam passing apertures, each of which has an inner circular portion with a diameter d2. In accordance with the progressively reduced electron beam passing aperture size in proceeding toward the cathode(s) of the inventive electron gun


40


, d4>d3>d2>d1.




Referring to

FIG. 3

, there is shown a longitudinal sectional view of another embodiment of a bi-potential electron gun


70


in accordance with the present invention. Bi-potential electron gun


70


includes a G1 control grid


72


, a G2 screen grid


74


, and a G31 grid


76


. The G1 control grid


72


, G2 screen grid


74


, and the bottom portion of the G31 grid


76


form the electron gun's BFR


75


. Electron gun


70


further includes a G32 grid


78


, a G33 grid


80


, a G34 grid


82


, and a G4 grid


84


. The upper portion of the G31 grid


76


, the G32 grid


78


, the G33 grid


80


, and the lower portion of the G34 grid


82


form the electron gun's dynamic focus lens


77


. The top portion of the G34 grid


82


and the G4 grid


84


form the electron gun's main focus lens


79


. The electron gun's cathode K directs energetic electrons through aligned apertures in the aforementioned grids, with the electron gun's BFR


75


forming the electrons into an electron beam


65


(shown in the figure in dotted line form). As shown in

FIG. 3

, the diameter of the electron beam


65


expands as previously described as it transits aligned apertures in the various grids in traveling from the electron gun's cathode K to its display screen (which is not shown in the figure for simplicity).




A variable voltage V


d


source


90


is connected to and charges the electron gun's G32 grid


78


and G34 grid


82


. A voltage applied to the G32 grid


78


and G34 grid


82


by the variable voltage V


d


source


90


varies as the electron beams are swept across the CRT's display screen. A fixed voltage V


s


source


92


is coupled to and charges the G31 grid


76


and G33 grid


80


. An anode voltage E


b


source


94


is connected to and charges the G4 grid


84


for focusing and accelerating the electron beams toward the CRT's display screen. The time variable voltage applied to the G34 grid


82


and the G32 grid


78


in combination with the fixed voltage applied to the G33 grid


80


and the G31 grid


76


and the relative positions of these grids results in the formation of three dynamic quadrupoles in the electron gun's dynamic focus lens


77


. Thus, a first dynamic quadrupole


86


(shown in dotted line form) is formed between the bottom portion of the G34 grid


82


and the top portion of the G33 grid


80


. A second dynamic quadrupole


87


(also shown in the figure in dotted line form) is formed between the bottom portion of the G33 grid


80


and the top portion of the G32 grid


78


. Finally, a third dynamic quadrupole


88


(also shown in dotted line form) is formed between the bottom portion of the G32 grid


78


and the top portion of the G31 grid


76


. The combination of the first, second and third dynamic quadrupoles


86


,


87


and


88


form the dynamic quadrupole lens region to compensate for the astigmatism effect of the CRT's deflection yoke.




As shown in

FIG. 3

, the beam passing aperture


76




a


in the top portion of the G31 grid


76


has a diameter d1. The apertures


78




a


and


78




b


respectively in the bottom and top portions of the G32 grid


78


are provided with respective diameters of d2 and d3. The apertures


80




a


and


80




b


respectively in the bottom and top portions of the G33 grid


80


are provided with respective diameters of d4 and d5. Finally, the aperture


82




a


in the bottom portion of the G34 grid


82


is provided with a diameter of d6. In accordance with the embodiment of the invention shown in

FIG. 3

, d6>d5>d4>d3>d2>d1. By progressively reducing the diameters of the electron beam passing apertures in the charged grids in the electron gun's dynamic focus lens


77


, as the diameter of the electron beam


65


is reduced in proceeding toward cathode K, the focusing sensitivity of the electron gun's dynamic focus lens on the electron beams is substantially increased. By increasing electron beam focusing sensitivity, the dynamic focusing voltage in the electron gun's dynamic focus lens


77


may be reduced resulting in a corresponding reduction in dynamic spherical aberration in the election beam spot on the CRT's display screen.




Referring to

FIGS. 3



a


-


3




f


, there are shown sectional views of the bi-potential electron gun


70


shown in

FIG. 3

taken respectively along sight lines


3




a





3




a


,


3




b





3




b


,


3




c





3




c


,


3




d





3




d


,


3




e





3




e


and


3




f





3




f


. As shown in

FIG. 3



a


, the low side of the G34 grid


82


is provided with an elongated common beam passing aperture


82




a


having three spaced enlarged portions disposed along its length. Each of the enlarged portions in the common beam passing aperture


82


is generally circular and has a diameter d6. As shown in

FIG. 3



d


, the high side of the G32 grid


78


is also provided with an elongated common beam passing aperture through which all three electron beams are directed. The common beam passing aperture


78




b


is also provided with three spaced enlarged portions along its length, each having a generally circular shape. The spaced enlarged portions of the common beam passing aperture


78




b


are each provided with a diameter d3. Similarly, the low side of the G32 grid


78


is provided with an elongated common beam passing aperture


78




a


having three spaced enlarged portions disposed along the length thereof. Each of the enlarged portions of the common beam passing aperture


78




a


has a diameter d2.

FIG. 3



b


is an elevation view of the high side of the G33 grid


80


which includes three spaced beam passing apertures through each of which is directed a respective one of the electron beams. The three spaced apertures in the high side of the G33 grid


80


are each provided with an enlarged, generally circular inner portion having a diameter d5. As shown in

FIG. 3



c


, the low side of the G33 grid


80


is also provided with three spaced beam passing apertures each having an inner enlarged portion with a diameter d4. Similarly, as shown in

FIG. 3



f


, the high side of the G31 grid


76


is provided with three spaced beam passing apertures each having an enlarged, generally circular inner portion having a diameter d1. As shown in

FIGS. 3



a


-


3




f


, the enlarged, generally circular portions of the beam passing apertures of the G34 grid


82


, the G33 grid


80


, the G32 grid


78


, and the G31 grid


76


are defined by the relationship d6>d5>d4>d3>d2>d1.




Referring to

FIG. 4

, there is shown a longitudinal sectional view of another embodiment of a bi-potential electron gun


100


in accordance with the present invention. Electron gun


100


includes one or more cathodes K which direct one or more electron beams


121


through aligned apertures in a G1 control grid


102


, a G2 screen grid


104


, and a G31 grid


106


. The combination of the G1 control grid


102


, G2 screen grid


104


, and the bottom portion of the G31 grid


106


forms the electron gun's BFR


115


. Electron gun


100


further includes a G32 grid


108


, a G33 grid


110


, a G34 grid


112


, and a G4 grid


114


. The top portion of the G31 grid


106


, the G32 grid


108


, the G33 grid


110


, and the bottom portion of the G34 grid


112


form the electron gun's dynamic focus lens


117


. The top portion of the G34 grid


112


and the G4 grid


114


form the electron gun's main focus lens


119


. Each of the aforementioned grids includes at least one aperture, where all of the apertures are arranged in linear alignment for passing electron beam


121


which is incident upon the display screen (not shown for simplicity) of a CRT for displaying a video image. In the case of a monochrome CRT, all of the beam passing apertures are arranged along a single linear axis, while in the case of a color CRT three such arrays of linearly aligned apertures are provided for, with each aligned array of apertures passing a respective electron beam for providing one of the primary colors of red, green and blue.




A dynamic voltage V


d


source


116


is coupled to and charges the G34 grid


112


and the G32 grid


108


. A fixed voltage V


s


source


118


is coupled to and charges the G33 grid


110


and the G31 grid


106


. An anode voltage E


b


source


120


is coupled to and charges the G4 grid


114


for focusing and accelerating the electron beam(s).




A first dynamic quadrupole


122


(shown in dotted line form) is formed by the bottom portion of the G34 grid


112


and the top portion of the G33 grid


110


. A second dynamic quadrupole


124


(also shown in dotted line form) is formed by the bottom portion of the G33 grid


110


, the G32 grid


108


, and the top portion of the G31 grid


106


. The combination of the first and second dynamic quadrupoles


122


and


124


forms a quadrupole lens which compensates for the astigmatism effect on the electron beam


121


caused by the CRT's deflection yoke. The first dynamic quadrupole


122


is comprised of two elements, while the second dynamic quadrupole


124


is comprised of three elements.




In the first dynamic quadrupole


122


, an electron beam passing aperture


112




a


in the bottom portion of the G34 grid


112


is provided with a diameter of d5. Also in the first quadrupole


122


, an electron beam passing aperture


110




b


in the top portion of the G33 grid


110


is provided with a diameter of d4. In the second dynamic quadrupole


124


, a beam passing aperture


110




a


in the bottom portion of the G33 grid


110


is provided with a diameter d3 and a beam passing aperture


108




a


in the G32 grid


108


is provided with a diameter of a d2. Also in the second dynamic quadrupole


124


, a beam passing aperture


106




a


in the top portion of the G31 grid


106


is provided with a diameter d1. In accordance with the embodiment of the invention shown in

FIG. 4

, d5>d4>d3>d2>d1. Thus, the aligned beam passing apertures in the electron gun's dynamic focus lens


117


are of reduced diameter in proceeding from the CRT's display screen to its cathode K, corresponding to the reduced diameter of the electron beam


121


in proceeding toward cathode K. This arrangement provides increased beam focusing sensitivity in the dynamic focus lens portion of electron gun


100


, while permitting a reduction in magnitude of the beam dynamic focus voltages applied to the various charged grids in the electron gun's dynamic focus lens


117


without increasing electron beam spot aberration on the CRT's display screen.




Referring to

FIGS. 4



a


-


4




e


, there are respectively shown sectional views of the bi-potential electron gun


100


shown in

FIG. 4

taken respectively along sight lines


4




a





4




a


,


4




b





4




b


,


4




c





4




c


,


4




d





4




d


and


4




e





4




e


. As shown in

FIG. 4



a


, the low side of the G34 grid


112


is provided with an elongated, common beam passing aperture through which the three electron beams are directed. The elongated, common beam passing aperture


112




a


includes three spaced, generally circular enlarged portions each having a diameter d5. As shown in

FIG. 4



d


, the G32 grid


108


also includes an elongated, common beam passing aperture


108




a


having three spaced, generally circular enlarged portions through each of which is directed a respective electron beam. The enlarged portions disposed in a spaced manner along the common beam passing aperture


108




a


each have a diameter d2. As shown in

FIG. 4



b


, the high side of the G33 grid


110


includes three spaced beam passing apertures each having a generally circular inner portion with a diameter d4. As shown in

FIG. 4



c


, the low side of the G33 grid


110


similarly includes three spaced beam passing apertures each having an inner enlarged, generally circular portion through which a respective electron beam is directed. Each of the enlarged portions of the beam passing apertures in the G33 grid has a diameter d3. Similarly, as shown in

FIG. 4



e


, the high side of the G31 grid


106


includes three spaced beam passing apertures, each having an enlarged, generally circular inner portion through which a respective electron beam is directed. The enlarged, generally circular inner portion of each of the beam passing apertures in the G31 grid


106


has a diameter d1. In accordance with the progressively reduced electron beam passing aperture size in proceeding toward the electron gun's cathode arrangement of the present invention, d5>d4>d3>d2>d1.




Referring to

FIG. 5

, there is shown a longitudinal sectional of another embodiment of a bi-potential electron gun


130


incorporating progressively reduced electron beam passing aperture size in accordance with the present invention. The bi-potential electron gun


130


includes a cathode K (or cathodes in case of a color CRT) which directs energetic electrons through aligned apertures in a G1 control grid


132


, a G2 screen grid


134


, and a G31 grid


136


. The G1 control grid


132


, G2 screen grid


134


and the bottom portion of the G31 grid


136


form the BFR


137


of electron gun


130


. The electron gun


130


further includes a G32 grid


138


, a G33 grid


140


, a G34 grid


142


, a G35 grid


144


, and a G4 grid


146


. Each of the aforementioned grids has one or more apertures in common alignment for passing an electron beam


143


(shown in the figure in dotted line form) which is incident upon the display screen (not shown in the figure for simplicity) of the CRT.




A time variable voltage V


d


source


152


is coupled to and charges the electron gun's G31 grid


136


, G33 grid


140


, and G35 grid


144


. A fixed voltage V


s


source


154


is coupled to and charges the electron gun's G32 grid


138


and G34 grid


142


. An anode voltage E


b


source


156


is coupled to and charges the B34 grid


146


for focusing and accelerating the electron beam


143


toward the CRT's display screen.




The top portion of the G31 grid


136


in combination with the G32 grid


138


, the G33 grid


140


, the G34 grid


142


, and the bottom portion of the G35 grid


144


form the electron gun's dynamic focus lens


139


. The top portion of the G35 grid


144


and the G4 grid


146


form the electron gun's main focus lens


141


.




The bottom portion of the G35 grid


144


in combination with the G34 grid


142


and the top portion of the G33 grid


140


form a first dynamic quadrupole


148


(shown in the figure in dotted line form). Similarly, the bottom portion of the G33 grid


140


in combination with the G32 grid


138


and the top portion of the G31 grid


136


form a second dynamic quadrupole


150


(also shown in dotted line form). The time variable voltage provided by the V


d


source


152


to the G31 grid


136


, the G33 grid


140


, and the G35 grid


144


permits the first and second dynamic quadrupoles


148


and


150


to focus the electron beam


143


(or beams) on the CRT's display screen as the beams are swept across the display screen in forming a video image thereon. The first and second dynamic quadrupoles


148


,


150


correct for astigmatism in the electron beam's spot on the display screen as the electron beam (or beams) are deflected over the display screen caused by the CRT's inline magnetic deflection yoke. The first and second dynamic quadrupoles


148


,


150


also correct for out-of-focus effects on the electron beam arising from changes in the electron beam's landing distance as it is incident upon the display screen.




As shown in

FIG. 5

, the beam passing apertures in the electron gun's dynamic focus lens


139


are of decreasing diameter in proceeding toward cathode K. Thus, the beam passing aperture


144




a


in the bottom portion of the G35 grid


144


has a diameter d6, while the beam passing aperture


142




a


in the G34 grid


142


has a diameter of d5. Similarly, the top portion of the G33 grid


144


is provided with a first beam passing aperture


140




b


having a diameter d4, while the bottom portion of this grid is provided with a second beam passing aperture


140




a


having a diameter d3. Finally, the G32 grid


138


includes a beam passing aperture


138




a


having a diameter d2, while the top portion of the G31 grid


136


is provided with a beam-passing aperture


136




a


having a diameter d1. In accordance with this embodiment of the present invention, d6>d5>d4>d3>d2>d1. By reducing the diameter of the beam passing aperture in the electron gun's dynamic focus lens


139


in proceeding towards it's cathode K, the focusing sensitivity of the dynamic focus lens on the electron beam


143


is substantially increased and compensates for the reduced diameter of the electron beam in proceeding toward cathode K. By increasing the focusing sensitivity of the electron gun's dynamic focus lens


139


on the electron beam


143


, the peak dynamic voltage applied by the V


d


source


152


to the G31 grid


136


, the G33 grid


140


, and the G35 grid


144


may be substantially reduced, resulting in a corresponding reduction in the dynamic spherical aberration of the electron beam's spot on the CRT's display screen.




Referring to

FIGS. 5



a


-


5




f


, there are respectively shown sectional views of the bi-potential electron gun


130


shown in

FIG. 5

taken along sight lines


5




a





5




a


,


5




b





5




b


,


5




c





5




c


,


5




d





5




d


,


5




e





5




e


and


5




f





5




f


therein. As shown in

FIG. 5



a


, the low side of the G35 grid


144


includes an elongated, common electron beam passing aperture


144




a


having three spaced enlarged portions arranged along its length. Each of the enlarged portions in the common beam passing aperture


144




a


is generally circular and has a diameter d6. As shown respectively in

FIGS. 5



c


and


5




d


, the high and low sides of the G33 grid


140


each include a respective elongated, common electron beam passing aperture


140




b


and


140




a


. Each of the elongated common beam passing apertures


144




b


,


144




a


includes three spaced, enlarged portions each having a diameter of d4 and d3, respectively. Similarly, as shown in

FIG. 5



f


, the high side of the G31 grid


136


includes an elongated, common beam passing aperture having three spaced enlarged portions disposed along its length. Each of the spaced enlarged portions in the common beam passing aperture


136




a


is generally circular and has a diameter d1. As shown in

FIG. 5



b


, the G34 grid


142


includes three spaced electron beam passing apertures through each of which a respective electron beam is directed. Each of the beam passing apertures in the G34 grid


142


has an inner, enlarged, generally circular portion having a diameter d5. Similarly, as shown in

FIG. 5



e


, the G32 grid


138


includes three spaced electron beam passing apertures through each of which a respective electron beam is directed. Each of the three electron beam passing apertures in the G32 grid


138


has an inner, enlarged, generally circular portion having a diameter d2. In accordance with the progressively reduced electron beam passing aperture size arrangement of the present invention, the aligned beam passing apertures in the grids shown in

FIGS. 5



a


-


5




f


have the relationship d6>d5>d4>d3>d2>d1.




Referring to

FIG. 6

, there is shown a simplified partial respective view of the bi-potential electron gun


100


shown in FIG.


4


. As described above, the bi-potential electron gun


110


includes the G31 grid


106


, the generally flat G32 grid


108


, and the G33 grid


110


. As described above, the high side of the G31 grid


106


includes three spaced, keyhole-shaped beam passing apertures each having an enlarged, generally circular inner portion. The low side of the G33 grid


110


similarly includes three spaced beam passing apertures also having inner, generally circular portions through which a respective electron beam is directed. Each of the three electron beams in the G33 grid


110


is larger, particularly in its inner, generally circular portion, than the corresponding beam passing aperture in the high side of the G31 grid


106


with which it is aligned. Also as described above, the G32 grid


108


includes an elongated, common electron beam passing aperture


108


through which all three electron beams are directed. Arranged in a spaced manner along the length of the common beam passing aperture


108


are three, generally circular enlarged portions through which a respective one of the electron beams is directed. The generally circular inner portion of each of the beam passing apertures in the low side of the G33 grid


110


is larger than the spaced, corresponding, aligned generally circular portions in the common beam passing aperture


108




a


of the G32 grid


108


. A first fixed voltage V


s


is provided to the G31 grid


106


by a fixed voltage source


118


. A second fixed voltage V


s


′ is provided to the G33 grid


110


by means of the fixed voltage source


118


. A dynamic voltage V


d


is provided to the G32 grid


108


by a variable voltage source


116


.




While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the relevant art that changes and modifications may be made without departing from the invention in its broader aspects. Therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention. The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. The actual scope of the invention is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.



Claims
  • 1. An electron gun for use in a cathode ray tube (CRT) having plural electron beams for producing a color video image on a display screen, said electron gun comprising:a cathode for providing energetic electrons; a beam forming region (BFR) aligned with said cathode and disposed intermediate said cathode and the display screen for receiving and forming said energetic electrons into a narrow beam, said BFR including plural spaced first charged grids each having one or more first aligned apertures, wherein said electrons are directed through said first aligned apertures and said electron beam increases in cross section in proceeding from said BFR toward the display screen; and an electrostatic lens disposed intermediate said BFR and the display screen and including plural spaced second grids charged by a respective focus voltage, each of said second grids having one or more second aligned apertures through which said electron beam is directed for focusing said electron beam on the display screen, wherein said second aligned apertures decrease in size in proceeding in a direction from the display screen toward said BFR for increasing focusing sensitivity of said electrostatic lens on the electron beam while decreasing said focus voltages, said electrostatic lens including a dynamic quadrupole and said second grids including a third grid having a fixed focus voltage and fourth grid having a dynamic focus voltage, said third grid including plural spaced apertures for passing a respective electron beam and said fourth grid including a single common aperture for passing said plural electron beams, said single common aperture having plural spaced enlarged portions each aligned with a respective aperture in said third grid and adapted for passing a respective electron beam, and wherein each enlarged portion is larger than an aligned beam passing aperture in said third grid, and wherein said fourth grid is disposed intermediate said third grid and the display screen.
  • 2. An electron gun for use in a cathode ray tube (CRT) including plural electron beams for producing a color video image on a display screen, said electron gun comprising:a cathode for providing energetic electrons; a beam forming region (BFR) aligned with said cathode and disposed intermediate said cathode and the display screen for receiving and forming said energetic electrons into a narrow beam, said BFR including plural spaced first charged grids each having one or more first aligned apertures, wherein said electrons are directed through said first aligned apertures and said electron beam increases in cross section in proceeding from said BFR toward the display screen; and an electrostatic lens disposed intermediate said BFR and the display screen and including plural spaced second grids charged by a respective focus voltage, each of said second grids having one or more second aligned apertures through which said electron beam is directed for focusing said electron beam on the display screen, wherein said second aligned apertures decrease in size in proceeding in a direction from the display screen toward said BFR for increasing focusing sensitivity of said electrostatic lens on the electron beam while decreasing said focus voltages, said electrostatic lens including a dynamic quadrupole and said second grids including a third and having a fixed focus voltage and fourth grid having a dynamic focus voltage, said third grid including plural spaced apertures for passing a respective electron beam and said fourth grid including a single common aperture for passing said plural electron beams, said single common aperture having plural spaced enlarged portions each aligned with a respective aperture in said third grid and adapted for passing a respective electron beam, and wherein each enlarged portion is smaller than an aligned beam passing aperture in said third grid, and wherein said third grid is disposed intermediate said fourth grid and the display screen.
  • 3. An electron gun for use in a cathode ray tube (CRT) for producing a video image on a display screen, said electron gun comprising:a cathode for providing energetic electrons; a beam forming region (BFR) aligned with said cathode and disposed intermediate said cathode and the display screen for receiving and forming said energetic electrons into a narrow beam, said BFR including plural spaced first charged grids each having one or more first aligned apertures, wherein said electrons are directed through said first aligned apertures and said electron beam increases in cross section in proceeding from said BFR toward the display screen; and an electrostatic lens disposed intermediate said BFR and the display screen and including plural spaced second grids charged by a respective focus voltage, each of said second grids having one or more second aligned apertures through which said electron beam is directed for focusing said electron beam on the display screen, said electrostatic lens including first and second dynamic quadrupoles each having a respective third grid and a respective fourth grid, wherein each of said third grids includes plural spaced apertures for passing a respective electron beam and each of said fourth grids includes a single common aperture having plural spaced aligned portions each adapted for passing a respective electron beam, and wherein each spaced aperture in each of said third grids is larger than an aligned enlarged portion of the single common aperture in an associated fourth grid when said fourth grid is disposed intermediate said cathode and its associated third grid, and is smaller than an aligned enlarged portion of the single common aperture in an associated fourth grid when said third grid is disposed intermediate said cathode and its associated fourth grid.
  • 4. The electron gun of claim 3 wherein the CRT is a color CRT having three cathodes for providing three groups of energetic electrons, and wherein each of said first charged grids includes three apertures each adapted to receive and form a respective group of energetic electrons into an elongated, narrow beam.
  • 5. The electron gun of claim 4 wherein the three apertures in each of said first charged grids are arranged in an inline array.
  • 6. The electron gun of claim 3 wherein said BFR includes a G1 control grid, a G2 screen grid, and a bottom portion of a G3 grid.
  • 7. The electron gun of claim 6 wherein said electrostatic lens includes a top portion of said G3 grid and plural spaced aligned focus grids disposed intermediate said G3 grid and the display screen.
US Referenced Citations (36)
Number Name Date Kind
3524094 Hasker et al. Aug 1970 A
3801817 Goodman Apr 1974 A
4177462 Chung Dec 1979 A
4193071 Hasegawa et al. Mar 1980 A
4225880 Goodman Sep 1980 A
4234814 Chen et al. Nov 1980 A
4247869 Culter et al. Jan 1981 A
4408223 Midland Oct 1983 A
4439735 Alvite et al. Mar 1984 A
4507585 Inoue et al. Mar 1985 A
4635106 Shinkai Jan 1987 A
4701677 Ashizaki et al. Oct 1987 A
5055749 Chen et al. Oct 1991 A
5113112 Shimoma et al. May 1992 A
5159240 Chen et al. Oct 1992 A
5182492 Chen Jan 1993 A
5204585 Chen Apr 1993 A
5220239 Chen Jun 1993 A
5223764 Chen Jun 1993 A
5241240 Chen et al. Aug 1993 A
5281896 Bae et al. Jan 1994 A
5316879 Berger et al. May 1994 A
5327044 Chen Jul 1994 A
5350967 Chen Sep 1994 A
5376505 Berger et al. Dec 1994 A
5424173 Wakabayashi et al. Jun 1995 A
5483128 Chen Jan 1996 A
5532547 Park et al. Jul 1996 A
5593761 Itoh et al. Jan 1997 A
5689158 Chen Nov 1997 A
6013976 Gorski et al. Jan 2000 A
6153970 Chen et al. Nov 2000 A
6236152 Kimiya et al. May 2001 B1
6313575 Kimiya et al. Nov 2001 B1
6339293 Kimiya et al. Jan 2002 B1
6608435 Kimiya et al. Aug 2003 B1