The present invention is directed to a color display device which can display high quality color states, and a display fluid for such a color display device.
In order to achieve a color display, color filters are often used. The most common approach is to add color filters on top of black/white sub-pixels of a pixellated display to display the red, green and blue colors. When a red color is desired, the green and blue sub-pixels are turned to the black state so that the only color displayed is red. When the black state is desired, all three-sub-pixels are turned to the black state. When the white state is desired, the three sub-pixels are turned to red, green and blue, respectively, and as a result, a white state is seen by the viewer.
The biggest disadvantage of such a technique is that since each of the sub-pixels has a reflectance of about one third (⅓) of the desired white state, the white state is fairly dim. To compensate this, a fourth sub-pixel may be added which can display only the black and white states, so that the white level is doubled at the expense of the red, green or blue color level (where each sub-pixel is only one fourth (¼) of the area of the pixel). Brighter colors can be achieved by adding light from the white pixel, but this is achieved at the expense of color gamut to cause the colors to be very light and unsaturated. A similar result can be achieved by reducing the color saturation of the three sub-pixels. Even with this approach, the white level is normally substantially less than half of that of a black and white display, rendering it an unacceptable choice for display devices, such as e-readers or displays that need well readable black-white brightness and contrast.
An alternative of color display device employs colored pigment particles, in addition to the black and white particles. This type of color display can display multiple color states by moving the black, white and colored particles to the viewing side. However, the number of the color states displayed is limited by how many types of different colored particles are in the display fluid and how well their movement can be controlled.
The present invention is directed to a display fluid comprising
In one embodiment, all of the color-generating particles are either positively or negatively charged.
In one embodiment, the charged color-generating particles have electrical polarization characteristics. In one embodiment, the solvent or solvent mixture has electrical polarization characteristics. In one embodiment, both the color-generating particles and the solvent or solvent mixture have electrical polarization characteristics.
In one embodiment, the color-generating particles are formed of silicon (Si), titanium (Ti), barium (Ba), strontium (Sr), iron (Fe), nickel (Ni), cobalt (Co), lead (Pb), aluminum (Al), copper (Cu), silver (Ag), gold (Au), tungsten (W), molybdenum (Mo), or a compound thereof.
In one embodiment, the color-generating particles are formed of polymer materials such as PS (polystyrene), PE (polyethylene), PP (polypropylene), PVC (polyvinyl chloride), or PET (polyethylene terephthalate).
In one embodiment, the color-generating particles are formed by coating particles or a cluster having no electric charge with a material having electric charges.
In one embodiment, the color-generating particles include a material which is electrically polarized with any one of electronic polarization, ionic polarization, interfacial polarization or rotational polarization due to asymmetrical charge distribution of atoms or molecules as an external electric field is applied.
In one embodiment, the color-generating particles include a ferroelectric material.
In one embodiment, the color-generating particles include a superparaelectric material.
In one embodiment, the color-generating particles include a material having a perovskite structure.
In one embodiment, the solvent is water, trichloroethylene, carbon tetrachloride, di-iso-propyl ether, toluene, methyl-t-butyl ether, xylene, benzene, diethyl ether, dichloromethane, 1,2-dichloroethane, butyl acetate, iso-propanol, n-butanol, tetrahydrofuran, n-propanol, chloroform, ethyl acetate, 2-butanone, dioxane, acetone, methanol, ethanol, acetonitrile, acetic acid, dimethylformamide, dimethyl sulfoxide or propylene carbonate.
In one embodiment, the present invention is directed to a method for generating a full spectrum of colors, which method comprises applying an electric field to the display fluid of the present invention to control the inter-particle distances of the color-generating particles.
In one embodiment, the intensity of the colors displayed is controlled by adjusting locations of the black and white electrophoretic particles or mixing levels of the black and white particles.
The present invention provides a reflective color display device which can display multiple color states, without the disadvantages associated with previously known color display devices.
The display fluid of the present invention, as shown in
The display fluid is sandwiched between two electrode layers. One of the electrode layers is a common electrode (14) which is a transparent electrode layer (e.g., ITO), spreading over the entire top of the display device. The other electrode layer (15) is a layer of pixel electrodes (15a).
The pixel electrodes are described in U.S. Pat. No. 7,046,228, the content of which is incorporated herein by reference in its entirety. It is noted that while active matrix driving with a thin film transistor (TFT) backplane is mentioned for the layer of pixel electrodes, the scope of the present invention encompasses other types of electrode addressing as long as the electrodes serve the desired functions.
The black electrophoretic particles (11) may be formed from Cl pigment black 26 or 28 or the like (e.g., manganese ferrite black spinel or copper chromite black spinel) or carbon black.
The white electrophoretic particles (12) may be formed from an inorganic pigment, such as TiO2, ZrO2, ZnO, Al2O3, Sb2O3, BaSO4, PbSO4 or the like.
As stated, the black and white particles are oppositely charged. If the black particles are positively charged, then the white particles are negatively charged, or vice versa.
The percentages of the black and white particles in the fluid may vary. For example, the black electrophoretic particle may take up 0.1% to 10%, preferably 0.5% to 5%, by volume of the electrophoretic fluid; the white electrophoretic particle may take up 1% to 50%, preferably 5% to 20%, by volume of the fluid.
The size of the black and white particles in the fluid may vary. For example, both the black and white particle may have a size between 100 nm to 10 μm, preferably between 200 nm to 1 μm.
The charged color generating particles having photonic crystal characteristics are described in U.S. Pat. No. 8,238,022. Some of the description in U.S. Pat. No. 8,238,022 is quoted below. However, it is noted that the content of the entire patent is incorporated herein by reference.
The color generating particles are charged. They may have electrical polarization characteristics or the solvent may have electrical polarization characteristics or both may have electrical polarization characteristics. In any case, the inter-particle distances may be controlled by applying an electric field to the display fluid, thereby implementing a full spectrum of colors using the photonic crystal characteristics of the color-generating particles.
All of the color-generating particles carry the same charge polarity, either positive or negative. They may be arranged at predetermined spaces from each other by the repulsive force between them caused by electric charges of the same polarity.
The diameter of the color-generating particles may range from several nm to several hundred microns; but the particle diameter is not necessarily limited thereto.
As indicated in U.S. Pat. No. 8,238,022, the color-generating particles may be formed of elements, such as silicon (Si), titanium (Ti), barium (Ba), strontium (Sr), iron (Fe), nickel (Ni), cobalt (Co), lead (Pb), aluminum (Al), copper (Cu), silver (Ag), gold (Au), tungsten (W), molybdenum (Mo), or a compound thereof. In addition, the color-generating particles may be formed of polymer materials such as PS (polystyrene), PE (polyethylene), PP (polypropylene), PVC (polyvinyl chloride), or PET (polyethylene terephthalate).
Furthermore, the color-generating particles may be formed by coating particles or a cluster having no electric charge with a material having electric charges. Examples of these particles may include particles whose surfaces are processed (or coated) with an organic compound having a hydrocarbon group; particles whose surfaces are processed (or coated) with an organic compound having a carboxylic acid group, an ester group or an acyl group; particles whose surfaces are processed (or coated) with a complex compound containing halogen (F, Cl, Br or I) elements; particles whose surfaces are processed (or coated) with a coordination compound containing amine, thiol or phosphine; and particles having electric charges generated by forming radicals on the surfaces.
Meanwhile, in order for the color-generating particles to effectively exhibit photonic crystal characteristics by maintaining a stable colloidal state without precipitation in a solvent, the value of the electrokinetic potential (i.e., zeta potential) of the colloidal solution (comprising the particles and a solvent) may be greater than or equal to a preset value. For example, the absolute value of the electrokinetic potential of the colloidal solution may be more than or equal to 10 mV. In addition, the difference in specific gravity between the particles and the solvent may be less than or equal to a preset value, for example, less than or equal to 5. Furthermore, the difference in refractive index between the solvent and the particles may be greater than or equal to a preset value, for example, more than or equal to 0.3.
Further, if the color-generating particles have electrical polarization characteristics, the particles may include a material which is electrically polarized with any one of electronic polarization, ionic polarization, interfacial polarization or rotational polarization due to asymmetrical charge distribution of atoms or molecules as an external electric field is applied.
Moreover, the color-generating particles may include a ferroelectric material, which shows an increase in polarization upon application of an external electric field and shows a large remnant polarization and remnant hysteresis even without the application of an external electric field. Alternatively, the color-generating particles may include a superparaelectric material, which shows an increase in polarization upon application of an external electric field and shows no remnant polarization and no remnant hysteresis when no external electric field is applied.
Further, the color-generating particles may include a material having a perovskite structure. Examples of materials having a perovskite structure, such as ABO3, may include materials such as PbZrO3, PbTiO3, Pb(Zr,Ti)O3, SrTiO3, BaTiO3, (Ba, Sr)TiO3, CaTiO3, LiNbO3 or the like.
If the color-generating particles have electrical polarization characteristics, the solvent does not have to have electrical polarization characteristics. In this case, the solvent may be a dielectric solvent, examples of which include, but are not limited to, solvents having a low viscosity and a dielectric constant in the range of about 2 to about 30, preferably about 2 to about 15 for high particle mobility. Specific examples of suitable dielectric solvent may include hydrocarbons such as Isopar, decahydronaphthalene (DECALIN), 5-ethylidene-2-norbornene, fatty oils, paraffin oil; silicon fluids; aromatic hydrocarbons such as toluene, xylene, phenylxylylethane, dodecylbenzene and alkylnaphthalene; halogenated solvents such as perfluorodecalin, perfluorotoluene, perfluoroxylene, dichlorobenzotrifluoride, 3,4,5-trichlorobenzotrifluoride, chloropentafluorobenzene, dichlorononane, pentachlorobenzene; and perfluorinated solvents such as FC-43, FC-70 and FC-5060 from 3M Company, St. Paul Minn., low molecular weight halogen containing polymers such as poly(perfluoropropylene oxide) from TCI America, Portland, Oreg., poly(chlorotrifluoro-ethylene) such as Halocarbon Oils from Halocarbon Product Corp., River Edge, N.J., perfluoropolyalkylether such as Galden from Ausimont or Krytox Oils and Greases K-Fluid Series from DuPont, Del., polydimethylsiloxane based silicone oil from Dow Corning (DC-200).
If the color-generating particles do not have electrical polarization characteristics, the solvent has to have electrical polarization characteristics, which may be created by methods/materials as described above for the color-generating particles. For example, the solvent may include a material which is electrically polarized with any one of electronic polarization, ionic polarization, interfacial polarization, or rotational polarization due to asymmetrical charge distribution of atoms or molecules as an external electric field is applied; or the solvent may include a ferroelectric material; or the solvent may include a superparaelectric material; or the solvent may include a material having a perovskite structure as described above; or the solvent may include a material having a polarity index of 1 or greater.
Examples of solvents having electrical polarization characteristics may include, but are not limited to, water, trichloroethylene, carbon tetrachloride, di-iso-propyl ether, toluene, methyl-t-butyl ether, xylene, benzene, diethyl ether, dichloromethane, 1,2-dichloroethane, butyl acetate, iso-propanol, n-butanol, tetrahydrofuran, n-propanol, chloroform, ethyl acetate, 2-butanone, dioxane, acetone, methanol, ethanol, acetonitrile, acetic acid, dimethylformamide, dimethyl sulfoxide and propylene carbonate.
The color-generating particles carrying the same charge polarity are dispersed in a solvent which has electrical polarization characteristics. When an electric field is applied to the dispersion, electrical attraction proportional to the intensity of the electric field and the charge amount of the particles, act on the particles due to the electric charges of the particles. As a result, the particles move in a predetermined direction by electrophoresis, thus narrowing the inter-particle distances. In contrast, electrical repulsion generated between the particles having the electric charges of the same polarity increases as the inter-particle distances become smaller resulting in a predetermined equilibrium state while preventing the inter-particle distances from continuing to decrease.
Further, the solvent is electrically polarized in a predetermined direction due to the electrical polarization characteristics of the solvent. Thus, electrical attraction is locally generated and exerts a predetermined effect upon the inter-particle distances between the particles electrically interacting with the polarized solvent. That is, the color-generating particles can be regularly arranged at distances where electrical attraction induced by an external electric field, electrical repulsion between the particles having electric charges of the same polarity and electrical attraction induced by polarization, are in equilibrium. As a result, the inter-particle distances can be controlled at predetermined levels, and the particles arranged at predetermined distances can function as photonic crystals. Since the wavelength of light reflected from the regularly spaced particles is determined by the inter-particle distance, the wavelength of the light reflected from the particles can be arbitrarily controlled by controlling the inter-particle distances. Therefore, a pattern of the wavelength of reflected light may be diversely represented by the factors, such as the intensity and direction of the applied electric field, the size and mass of the particles, the refractive indices of the particles and the solvent, the charge amount of the particles, the electrical polarization characteristics of the solvent or the concentration of the particles dispersed in the solvent.
Alternatively, when the color-generating particles having both electric charges of the same polarity and electrical polarization characteristics are dispersed in a solvent and if an electric field is applied to the particles and the solvent, electrical attraction proportional to the intensity of the electric field and the charge amount of the particles act on the particles due to the electric charges of the particles. Therefore, the particles move in a predetermined direction by electrophoresis, thus narrowing the inter-particle distance. In contrast, electrical repulsion generated between the particles having the electric charges of the same polarity increases as the inter-particle distances decreases, thus reaching a predetermined equilibrium state while preventing the inter-particle distances from continuing to decrease. The particles are electrically polarized in a predetermined direction due to the electrical polarization characteristics of the particles. Thus, electrical attraction is locally generated between the polarized particles and exerts a predetermined effect upon the inter-particle distances.
As a result, the color-generating particles can be regularly arranged at a distance where electrical attraction induced by an external electric field, electrical repulsion between the particles having electric charges of the same polarity and electrical attraction induced by polarization, are in equilibrium. Accordingly, the inter-particle distances can be controlled at predetermined intervals, and the particles arranged at predetermined intervals can function as photonic crystals. Since the wavelength of light reflected from the regularly arranged color-generating particles is determined by the inter-particle distances, the wavelength of the light reflected from the particles can be accurately controlled by controlling the inter-particle distances. Therefore, a pattern of the wavelength of reflected light may be diversely represented by the factors, such as the intensity and direction of an electric field, the size and mass of the particles, the refractive indices of the particles and the solvent, the charge amount of the particles, the electrical polarization characteristics of the particles or the concentration of the particles dispersed in the solvent.
It is possible for both the color-generating particles and the solvent to have electrical polarization characteristics.
As shown, a display fluid comprises two types of electrophoretic particles, black (21) and white (22), and one type of color-generating particles (23). It is assumed that the black electrophoretic particles are positively charged and the white electrophoretic particles are negatively charged. The color-generating particles carry a positive charge and the charge level of the color-generating particles is lower than that of the charges carried by the black and white particles.
When a high positive driving voltage V2 is applied for a short period of time t2, the positively charged black particles are driven to the viewing side (i.e., the side of the common electrode). As a result, a black color is seen (
When a high negative driving voltage V1 is applied for a short period of time t1, the negatively charged white particles are driven to the viewing side. As a result, a white color is seen (
In
If a negative driving voltage V3 is applied to the fluid in
Similarly, if a positive driving voltage V4 is applied to the fluid in
The brightness of the color of the color-generating particles can be adjusted by controlling locations of the black and white particles and mixing levels through magnitude of driving voltages V3 and V4 and/or driving times, t3 and t4. The magnitude of driving voltages V3 and V4, in this case, may be higher than, or equal to, 10V. The driving times, t3 and t4, may be the same as t1 and t2, but in this case, they are preferably shorter than t1 and t2.
When a low positive driving voltage V5 is applied to the fluid in
The same phenomenon may also be achieved with V6 applied to the fluid of
When a voltage of V7 is applied to the fluid of
The driving voltages V6 and V7 are lower than V1 and V2 and the time periods t6 and t7 are longer than t1 and t2.
The phenomenon illustrated in
The colors referred to in the drawings, a first color, a second color and a third color, may be red, green and blue, respectively. However, this is in no way limiting the scope of the present invention. It is noted that each of the pixels in the present color display device may display an unlimited number of color states, because when different external electric fields are applied, they would cause the color-generating particles to reflect light of different wavelengths.
As stated above, the brightness of the color of the color-generating particles can be adjusted by controlling the locations and mixing levels of the black and white particles. This is shown in
In
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation, materials, compositions, processes, process step or steps, to the objective and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
This application is a continuation of copending application Ser. No. 14/242,793, filed Apr. 1, 2014 (Publication No. 2015/0268531), which claims benefit of U.S. Provisional Application Ser. No. 61/955,129, filed March 18, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3756693 | Ota | Sep 1973 | A |
3892568 | Ota | Jul 1975 | A |
4298448 | Muller et al. | Nov 1981 | A |
5378574 | Winnik et al. | Jan 1995 | A |
5980719 | Cherukuri et al. | Nov 1999 | A |
6198809 | DiSanto et al. | Mar 2001 | B1 |
6337761 | Rogers et al. | Jan 2002 | B1 |
6373461 | Hasegawa et al. | Apr 2002 | B1 |
6486866 | Kuwahara et al. | Nov 2002 | B1 |
6517618 | Foucher et al. | Feb 2003 | B2 |
6525866 | Lin et al. | Feb 2003 | B1 |
6538801 | Jacobson | Mar 2003 | B2 |
6600534 | Tanaka et al. | Jul 2003 | B1 |
6650462 | Katase | Nov 2003 | B2 |
6680726 | Gordon, ll et al. | Jan 2004 | B2 |
6693620 | Herb et al. | Feb 2004 | B1 |
6704133 | Gates et al. | Mar 2004 | B2 |
6724521 | Nakao et al. | Apr 2004 | B2 |
6729718 | Goto et al. | May 2004 | B2 |
6751007 | Liang et al. | Jun 2004 | B2 |
6829078 | Liang et al. | Dec 2004 | B2 |
6864875 | Drzaic et al. | Mar 2005 | B2 |
6947203 | Kanbe | Sep 2005 | B2 |
6967762 | Machida et al. | Nov 2005 | B2 |
6987503 | Inoue | Jan 2006 | B2 |
6987605 | Liang et al. | Jan 2006 | B2 |
7009756 | Kishi et al. | Mar 2006 | B2 |
7019889 | Katase | Mar 2006 | B2 |
7034987 | Schlangen | Apr 2006 | B2 |
7038655 | Herb et al. | May 2006 | B2 |
7038656 | Liang et al. | May 2006 | B2 |
7046228 | Liang et al. | May 2006 | B2 |
7050218 | Kanbe | May 2006 | B2 |
7057600 | Goden | Jun 2006 | B2 |
7057798 | Ukigaya | Jun 2006 | B2 |
7075502 | Drzaic et al. | Jul 2006 | B1 |
7116466 | Whitesides et al. | Oct 2006 | B2 |
7226550 | Hou et al. | Jun 2007 | B2 |
7259744 | Arango et al. | Aug 2007 | B2 |
7271947 | Liang et al. | Sep 2007 | B2 |
7283119 | Kishi | Oct 2007 | B2 |
7304987 | James et al. | Dec 2007 | B1 |
7312916 | Pullen et al. | Dec 2007 | B2 |
7342556 | Oue et al. | Mar 2008 | B2 |
7352353 | Albert et al. | Apr 2008 | B2 |
7365732 | Matsuda et al. | Apr 2008 | B2 |
7382351 | Kishi | Jun 2008 | B2 |
7411719 | Paolini, Jr. et al. | Aug 2008 | B2 |
7417787 | Chopra et al. | Aug 2008 | B2 |
7420549 | Jacobson et al. | Sep 2008 | B2 |
7474295 | Matsuda | Jan 2009 | B2 |
7492505 | Liang et al. | Feb 2009 | B2 |
7502162 | Lin et al. | Mar 2009 | B2 |
7545557 | Iftime et al. | Jun 2009 | B2 |
7548291 | Lee et al. | Jun 2009 | B2 |
7557981 | Liang et al. | Jul 2009 | B2 |
7605972 | Kawai et al. | Oct 2009 | B2 |
7652656 | Chopra et al. | Jan 2010 | B2 |
7679599 | Kawai | Mar 2010 | B2 |
7686463 | Goto | Mar 2010 | B2 |
7760419 | Lee | Jul 2010 | B2 |
7782292 | Miyasaka et al. | Aug 2010 | B2 |
7800813 | Wu et al. | Sep 2010 | B2 |
7808696 | Lee et al. | Oct 2010 | B2 |
7821702 | Liang et al. | Oct 2010 | B2 |
7830592 | Sprague et al. | Nov 2010 | B1 |
7852547 | Kim | Dec 2010 | B2 |
7852548 | Roh | Dec 2010 | B2 |
7911681 | Ikegami et al. | Mar 2011 | B2 |
7982941 | Lin et al. | Jul 2011 | B2 |
8072675 | Lin et al. | Dec 2011 | B2 |
8089686 | Addington et al. | Jan 2012 | B2 |
8115729 | Danner et al. | Feb 2012 | B2 |
8120838 | Lin et al. | Feb 2012 | B2 |
8159636 | Sun et al. | Apr 2012 | B2 |
8164823 | Ikegami et al. | Apr 2012 | B2 |
8169690 | Lin et al. | May 2012 | B2 |
8174492 | Kim et al. | May 2012 | B2 |
8237892 | Sprague et al. | Aug 2012 | B1 |
8238022 | Joo et al. | Aug 2012 | B2 |
8355196 | Yan et al. | Jan 2013 | B2 |
8395836 | Lin | Mar 2013 | B2 |
8422116 | Sprague et al. | Apr 2013 | B2 |
8466852 | Drzaic et al. | Jun 2013 | B2 |
8477405 | Ishii et al. | Jul 2013 | B2 |
8503063 | Sprague | Aug 2013 | B2 |
8520296 | Wang et al. | Aug 2013 | B2 |
8537104 | Markvoort et al. | Sep 2013 | B2 |
8570272 | Hsieh et al. | Oct 2013 | B2 |
8576475 | Huang et al. | Nov 2013 | B2 |
8605354 | Zhang et al. | Dec 2013 | B2 |
8649084 | Wang et al. | Feb 2014 | B2 |
8670174 | Sprague et al. | Mar 2014 | B2 |
8681191 | Yang et al. | Mar 2014 | B2 |
8704756 | Lin | Apr 2014 | B2 |
8717664 | Wang et al. | May 2014 | B2 |
8786935 | Sprague | Jul 2014 | B2 |
8797258 | Sprague | Aug 2014 | B2 |
8797636 | Yang et al. | Aug 2014 | B2 |
8810899 | Sprague et al. | Aug 2014 | B2 |
8917439 | Wang et al. | Dec 2014 | B2 |
8964282 | Wang et al. | Feb 2015 | B2 |
8976444 | Zhang et al. | Mar 2015 | B2 |
9013783 | Sprague | Apr 2015 | B2 |
9140952 | Sprague et al. | Sep 2015 | B2 |
9146439 | Zhang | Sep 2015 | B2 |
9170468 | Lin et al. | Oct 2015 | B2 |
9285649 | Du et al. | Mar 2016 | B2 |
9293511 | Jacobson et al. | Mar 2016 | B2 |
9360733 | Wang et al. | Jun 2016 | B2 |
9383623 | Lin et al. | Jul 2016 | B2 |
9459510 | Lin | Oct 2016 | B2 |
9460666 | Sprague et al. | Oct 2016 | B2 |
9513527 | Chan et al. | Dec 2016 | B2 |
9541814 | Lin et al. | Jan 2017 | B2 |
20070002008 | Tam | Jan 2007 | A1 |
20070080928 | Ishii et al. | Apr 2007 | A1 |
20070273637 | Zhou et al. | Nov 2007 | A1 |
20080042928 | Schlangen | Feb 2008 | A1 |
20080062159 | Roh et al. | Mar 2008 | A1 |
20080174531 | Sah | Jul 2008 | A1 |
20110043543 | Chen et al. | Feb 2011 | A1 |
20110199671 | Amundson et al. | Aug 2011 | A1 |
20110217639 | Sprague | Sep 2011 | A1 |
20110234557 | Yang et al. | Sep 2011 | A1 |
20140011913 | Du et al. | Jan 2014 | A1 |
20140055840 | Zang et al. | Feb 2014 | A1 |
20140340430 | Telfer et al. | Nov 2014 | A1 |
20140362213 | Tseng | Dec 2014 | A1 |
20150103394 | Wang et al. | Apr 2015 | A1 |
20150268531 | Wang et al. | Sep 2015 | A1 |
20150301246 | Zang et al. | Oct 2015 | A1 |
20160011484 | Chan et al. | Jan 2016 | A1 |
20160026062 | Zhang | Jan 2016 | A1 |
20160048054 | Danner | Feb 2016 | A1 |
20160116816 | Paolini et al. | Apr 2016 | A1 |
20160116818 | Du et al. | Apr 2016 | A1 |
20160140909 | Lin et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2009116041 | May 2009 | JP |
2009192637 | Aug 2009 | JP |
1020070082680 | Aug 2007 | KR |
9953373 | Oct 1999 | WO |
Entry |
---|
Nanobrick Co., Ltd, company website cover information, http://nanobrick.co.kr/, copied on Jun. 19, 2014. |
Number | Date | Country | |
---|---|---|---|
20170139304 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
61955129 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14242793 | Apr 2014 | US |
Child | 15419391 | US |