The present invention is directed to display devices which are capable of displaying multiple color states.
U.S. Pat. No. 7,046,228 discloses an electrophoretic display device having a dual switching mode which allows the charged pigment particles in a display cell to move in either the vertical (up/down) direction or the planar (left/right) direction. In such a display device, each of the display cells is sandwiched between two layers, one of which comprises a transparent top electrode, whereas the other layer comprises a bottom electrode and at least one in-plane electrode. Typically, the display cells are filled with a clear, but colored dielectric solvent or solvent mixture with charged white pigment particles dispersed therein. The background color of the display cells may be black. When the charged pigment particles are driven to be at or near the transparent top electrode, the color of the particles is seen, from the top viewing side. When the charged pigment particles are driven to be at or near the bottom electrode, the color of the solvent is seen. When the charged pigment particles are driven to be at or near the in-plane electrode(s), the color of the display cell background is seen. Accordingly, each of the display cells is capable of displaying three color states, i.e., the color of the charged pigment particles, the color of the dielectric solvent or solvent mixture or the background color of the display cell. The dual mode electrophoretic display, according to the patent, may be driven by an active matrix system or by a passive matrix system.
When this dual mode scheme is used for a full color display application, each pixel will have three individual display cells that contain a white particle dispersion in a red, green or blue colored solvent, respectively, and each display cell must be aligned with a set of electrodes on a backplane. The alignment accuracy between the red/green/blue display cells and the electrodes on the backplane is important in order to achieve good color performance.
There are several US patent applications (US2009-0273827, US2009-0251763, US2010-0165448, US2010-0165005 and US2010-0053728) which disclose color display devices, in some of which the electrodes on the backplane may be aligned or un-aligned with the display cells.
The display architecture of the present invention comprises (1) an electrophoretic film in which an electrophoretic fluid comprises two types of pigment particles of contrasting colors and carrying opposite charge polarities, dispersed in an optically clear solvent, and (2) a backplane with reflective colors associated with individual sub-pixel or pixel electrodes. This display architecture offers two basic operation modes, the white/black mode and the color mode.
The operation of the white/black mode is similar to the operation of a standard electrophoretic display with white and black states created by moving the white or black particles to the viewing side. When operating in this mode, particles can gather at either the common electrode or the pixel electrodes to show the white or black colors.
The operation of the color mode moves the white and black particles away to expose the color layers. In addition, the white and black particles that are moved aside can be arranged to show a specific gray level to complement the exposed color to meet the color chromaticity and brightness requirement.
The white/black mode and the color mode can be combined to deliver richer or brighter color images.
The number of sub-pixels and the color associated with each of the sub-pixel electrodes may vary with application. For a full color application, a design with a minimum of two sub-pixels per pixel is needed. For a highlight color application having black/white plus a single color (e.g., red, green or blue), there is no need for sub-pixels in a pixel.
The first aspect of the present invention is directed to a color display which comprises (1) an electrophoretic fluid comprising two types of pigment particles of contrasting colors and carrying opposite charge polarities dispersed in a clear and colorless solvent, and (2) a plurality of pixels, wherein:
In this aspect of the invention, the two types of pigment particles are black and white respectively. In one embodiment, the sub-pixel electrodes are rectangular or square. In one embodiment, the sub-pixel electrodes are of an irregular shape. In one embodiment, the sub-pixel electrodes are coated with a colored layer. In one embodiment, the sub-pixel electrodes are on a thin film transistor backplane. In one embodiment, the electrophoretic fluid is contained within individual display cells. In one embodiment, the display cells are microcups. In one embodiment, the display cells are microcapsules. In one embodiment, the display cells and the sub-pixel electrodes are aligned. In one embodiment, the display cells and the sub-pixel electrodes are unaligned. In one embodiment, each pixel comprises more than four sub-pixel electrodes.
The second aspect of the invention is directed to a color display which comprises (1) an electrophoretic fluid comprising two types of pigment particles of contrasting colors and carrying opposite charge polarities dispersed in a clear and colorless solvent, and a plurality of pixels, wherein:
In this second aspect of the invention, the two types of pigment particles are black and white respectively. In one embodiment, the pixel electrodes are rectangular or square. In one embodiment, the pixel electrodes are of an irregular shape. In one embodiment, the pixel electrodes are coated with a colored layer. In one embodiment, the pixel electrodes are on a thin film transistor backplane. In one embodiment, the electrophoretic fluid is contained within individual display cells. In one embodiment, the display cells are microcups. In one embodiment, the display cells are microcapsules. In one embodiment, the display cells and the pixel electrodes are aligned. In one embodiment, the display cells and the pixel electrodes are unaligned. In one embodiment, each pixel comprises more than three pixel electrodes.
The third aspect of the invention is directed to a color display which comprises (1) an electrophoretic fluid comprising two types of pigment particles of contrasting colors and carrying opposite charge polarities dispersed in a clear and colorless solvent, and (2) a plurality of pixels, wherein:
In this third aspect of the invention, the two types of pigment particles are black and white respectively. In one embodiment, the pixel electrodes are rectangular or square. In one embodiment, the pixel electrodes are of an irregular shape. In one embodiment, the pixel electrodes are coated with a colored layer. In one embodiment, the pixel electrodes are on a thin film transistor backplane. In one embodiment, the electrophoretic fluid is contained within individual display cells. In one embodiment, the display cells are microcups. In one embodiment, the display cells are microcapsules. In one embodiment, the display cells and the pixel electrodes are aligned. In one embodiment, the display cells and the pixel electrodes are unaligned.
The fourth aspect of the present invention is directed to a driving method for a color display which comprises an electrophoretic fluid comprising white and black pigment particles carrying opposite charge polarities and dispersed in a clear and colorless solvent, wherein said electrophoretic fluid is sandwiched between a common electrode and a plurality of colored sub-pixel or pixel electrodes, which method comprises:
a) applying a constant driving voltage between the common electrode and the sub-pixel or pixel electrode where the pigment particles are to be gathered; and
b) applying alternating positive driving voltage and negative driving voltage between the common electrode and the sub-pixel or pixel electrode which are to be exposed.
In one embodiment, the constant driving voltage in step (a) is 0V.
In one embodiment, a colored sub-pixel or pixel electrode may be an electrode underneath a colored layer and the colored layer may be a colored sealing layer enclosing an electrophoretic fluid within a display cell.
In another embodiment, there may be an adhesive layer between the colored layer and the sub-pixel or pixel electrode.
The color display of the present invention provides many advantages. For example, there is no need for precision display cell structure. In other words, there is no need to match the size of the display cells with the size of the electrodes on the backplane. There is also no need for precise alignment between the display cells and the electrodes on the backplane, position wise. In addition, no colorants are needed to be dissolved or dispersed in the solvent in which the pigment particles are dispersed.
a, 1b and 1c depict examples of the present invention.
a-4e illustrate how a color display of
a-10c illustrate how a color display of
a and 19b illustrate a display device with colored sealing layers serving as colored layers for the sub-pixel or pixel electrodes.
a depicts one embodiment of the present invention which is applicable to a full color display. In this design two sub-pixels (A and B) form a pixel. A display fluid (105) is sandwiched between a first layer (101) and a second layer (102). The first layer comprises a common electrode (103). In sub-pixel A, the second layer comprises two sub-pixel electrodes (104a and 104b) and in sub-pixel B, the second layer comprises two sub-pixel electrodes (104c and 104d).
In
The display fluid (105) may be an electrophoretic fluid comprising two types of pigment particles (106a and 106b), e.g., black and white, carrying charges of opposite polarities. The solvent in the display fluid is clear and colorless.
The sub-pixel electrodes are colored. For example, each of the sub-pixel electrodes may have a colored layer (108a-d, respectively) attached to it. The colored layer may be a color filter material or a colored adhesive material. Such a colored layer may be coated or laminated onto the sub-pixel electrodes when a single color is applied to all sub-pixel electrodes. When more than one color is needed, the color pattern may be printed or deposited, using, for example, a laser thermal transfer, ink jet or photo-patterning technique, on to different sub-pixel electrodes.
The colored layers (108a-d) may be on top of the sub-pixel electrodes (as shown) or underneath the sub-pixel electrodes (not shown) if the sub-pixel electrodes are transparent.
The colored layer provides color to the sub-pixel electrode. For example, in this application, a sub-pixel electrode which has a red colored layer attached to it is referred to as a red sub-pixel electrode.
It is also possible to have more than four sub-pixel electrodes in a pixel in this design, in order to enhance color brightness or color saturation. For the additional sub-pixel electrodes, they may be white, black or of another color.
b is an alternative design of the present invention which is also applicable to a full color display. In this design, a display fluid (105) is also sandwiched between a first layer (101) comprising a common electrode (103) and a second layer (102). In this alternative design, there is only one pixel and the second layer for the pixel comprises three pixel electrodes (104a, 104b and 104c). Each of the pixel electrodes (104a-c) also has a colored layer (108a-c, respectively) attached to it.
It is also possible to have more than three pixel electrodes in a pixel in this design, in order to enhance color brightness or color saturation. For the additional pixel electrodes, they may be white, black or of another color.
c is a further alternative design of the present invention which is applicable to a highlight color display. In this design, a display fluid (105) is also sandwiched between a first layer (101) comprising a common electrode (103) and a second layer (102). In this alternative design, a pixel comprises two pixel electrodes (104a and 104b) of the same color. In other words, the colored layers 108a and 108b are of the same color.
The description above of the display fluid and the colored layer for the color display of
The sizes of the sub-pixel electrodes (in
The shapes of the sub-pixel electrodes or pixel electrodes may also vary, as long as they serve the desired functions. For example, the sub-pixel electrodes or pixel electrodes may be rectangular in shape, as shown in
In a further embodiment of the present invention, the sub-pixel electrodes may be configured in a manner in order to increase the speed of image transition.
The term “irregular-shaped”, in the context of the present invention, refers to a sub-pixel or pixel electrode of any shape, except rectangle or square, which can provide a shorter distance for the charged pigment particles to travel to a desired location.
It is understood that the term “irregular-shaped” pixel electrode not only encompasses a sub-pixel or pixel electrode which is in one piece (i.e., its component pieces are both physically and electrically connected), but also encompasses a sub-pixel or pixel electrode which is divided into pieces (physically unconnected) and the pieces are electrically connected, as long as the overall shape of the pixel electrode will provide a shorter distance for the charged pigment particles to travel. In the latter case, it is noted that the separate pieces referred to can be of a rectangle, a square or of an irregular shape.
The common electrode (103) in designs of
It is noted that while active matrix driving with a thin film transistor (TFT) backplane is mentioned for the second layer (102), the scope of the present invention encompasses other types of electrode addressing as long as the electrodes serve the desired functions.
The term “color” referred to in this application may be a single color, a mid-tone color or a composite color.
a-4e illustrate how the color display of
For the purpose of illustration, it is assumed that the pixel has two sub-pixels, A and B. In sub-pixel A, there are one red sub-pixel electrode and one green sub-pixel electrode and in sub-pixel B, there are one green sub-pixel electrode and one blue sub-pixel electrode. The solvent in the display fluid is clear and colorless, the white pigment particles are positively charged and the black particles are negatively charged. The side of the first layer is the viewing side.
In
In
In
One of the key features of the color display of the present invention is to utilize an adjacent sub-pixel or pixel electrode (in this case, the green sub-pixel electrode in sub-pixel A as a collecting electrode for the particles that need to be moved away to gather, in order to expose the desired color of a sub-pixel or pixel electrode (in this case, the red sub-pixel electrode in sub-pixel A).
In
It is also possible to expose only one green sub-pixel electrode (in sub-pixel A or sub-pixel B). However, in that case, the green color would not be as bright.
In
In
a-5d show different scenarios and demonstrate how the intensity of a color displayed may be adjusted and controlled. In this example, only one sub-pixel is shown for illustration purpose.
In
a-6e is the top view showing the colors seen at the viewing side of the pixel comprising two sub-pixels, in
a-7e illustrate how a color display of
For illustration purpose, the white pigment particles are positively charged and the black pigment particles are negatively charged. The two types of pigment particles are dispersed in a clear and colorless solvent.
In
In
In
As stated above and also applicable to this alternative design, the color display device utilizes adjacent pixel electrodes (in this case, the red and green pixel electrodes) as collecting electrodes for the particles that need to be moved away in order to expose the desired color of a pixel electrode (in this case, the blue pixel electrode).
Similarly in
In
In
a-8e is the top view showing the colors seen at the viewing side of the pixel, in
a-9c illustrate how a highlight color display of
The display device of the present invention is also capable of displaying cyan, magenta and yellow color states.
a-10c show how a color display of
In
It is also possible for both green pixel electrodes to be exposed. In that case, the color will have a greener shade.
In
In
a-11c illustrate how a color display of
In
Similarly, in
In
In order to optimize the color quality, the sizes of the sub-pixel or pixel electrodes may be adjusted.
In another figure as shown, the size ratio of the red sub-pixel electrode to the green sub-pixel electrode is 3:2 in sub-pixel A, and the size ratio of the green sub-pixel electrode to the blue sub-pixel electrode is 2:3 in sub-pixel B. As a result, the size ratio of the three colored pixel electrodes, R:G:B, is 3:4:3.
In this example, the green color would be brighter in the pixel in which the size ratio of the three colors is 1:2:1 because the relative total area of the green sub-pixel electrodes is larger. Accordingly, the sizes of the sub-pixel or pixel electrodes may be adjusted to give different levels of color intensity. The discussion in this section is relevant to not only the sub-pixel or pixel electrodes of regular shapes; but also the sub-pixel or pixel electrodes of irregular shapes.
As stated, the sizes of the display cells and the pixel electrodes on a backplane, according to the present invention, do not have to be exactly matched. More importantly, the display cells also do not have to be aligned with the pixel electrodes, location wise.
The term “display cell” refers to a micro-container filled with a display fluid. A display cell may be a microcup as described in U.S. Pat. No. 6,930,818, the content of which is incorporated herein by reference in its entirety.
A display cell may also be any other micro-containers (e.g., microcapsules or microchannels), regardless of their shapes or sizes. All of these are within the scope of the present application, as long as the micro-containers are filled with a display fluid and have the same functions as the microcups.
In an aligned type, each set of sub-pixel or pixel electrodes are within the boundary of display cells. For the microcup-type of display cells, the boundary of a display cell is the partition walls surrounding the display cell. For the microcapsule-type of display cells, the boundary of a display cell is the polymeric matrix material in which the microcapsules are embedded.
a-16e show how such an unaligned design may display different color states.
In
It is shown in
Since the movement of particles follows the electric field lines and because the electric field lines are normal to the surface of the common electrode, all the lateral movement of the particles is in the lower part of a sub-pixel or pixel (near the pixel electrodes) where there are divergent electric field lines.
The particles are held with a driving voltage during driving and therefore they do not rely on bistability during that time.
As shown in
In this example, the target is to expose the color layer on sub-pixel electrode 1804b by moving the particles to sub-pixel electrode 1804a.
The common electrode is set at 0V.
During driving, the common electrode and one sub-pixel electrode (1804a) remain at a constant driving voltage to hold the particles in place at sub-pixel electrode (1804a) while sub-pixel electrode (1804b) is switched back and forth between a positive driving voltage and a negative driving voltage so that the particles are caught in the fringing field during transit and therefore are moved laterally to sub-pixel electrode (1804a).
For brevity, sub-pixel electrode 1804a is the sub-pixel electrode where the pigment particles will gather, which therefore may also be referred to as a “collecting electrode” and sub-pixel electrode 1804b is the sub-pixel electrode which will be exposed and therefore it may also be referred to as a “shutter electrode”.
In step 1 (the initiation step), the white particles are at or near the common electrode (1803) while the black particles are at or near the sub-pixel electrodes (1804a and 1804b).
In step 2, the black and white particles switch positions between the common electrode and the sub-pixel electrode (“shutter electrode”) (1804b).
In step 3, the black and white particles switching positions again between the common electrode and the “shutter electrode” (1804b) and some of the black particles are driven to sub-pixel electrode (“collecting electrode”) (1804a).
Steps 4 and 5 are optional steps which are repetition of steps 2 and 3 respectively. These two steps may be repeated many times, if necessary.
In step 6, the applied driving voltages are reversed, causing the black and white particles at the end of step 3 (or 5) to switch positions.
In step 7, the white particles at the “shutter electrode” 1804b are driven to the common electrode and at the same time, some of the white particles are driven to the “collecting electrode” 1804a.
In step 8, the white particles at the common electrode are driven to the “collecting electrode” 1804a and at the same time, some of the white particles are driven to the “shutter electrode” 1804b.
Steps 9 and 10 are optional steps which are repetition of steps 7 and 8, respectively. If the driving is complete at the end of step 8, then steps 9 and 10 are not needed. Step 10 in the figure shows that the particles have been moved to sub-pixel electrode 1804a to expose the color state of sub-pixel electrode 1804b.
In summary, the driving method comprises:
a) applying a constant driving voltage between the common electrode and the collecting electrode; and
b) applying alternating positive driving voltage and negative driving voltage between the common electrode and the shutter electrode.
Following the method as described, for the color display exemplified in
In some cases, there are more than one collecting electrode (see, for example,
The colored sub-pixel or pixel electrodes, as stated above, may be achieved by adding a color filter or a colored adhesive layer over the electrodes. Alternatively, the color pattern may be printed, thermal transferred or deposited over the electrodes.
In a further embodiment of the present invention, the colored sub-pixel or pixel electrodes may be made by other methods.
A first option is particularly suitable for the electrophoretic display prepared from the microcup technology as described in U.S. Pat. No. 6,930,818, the content of which is incorporated herein by reference in its entirety.
As shown in
The colorant added to the sealing composition may be a dye or pigment. The sealing layer may be a transparent colored layer or a reflective colored layer.
When used, the film structure is viewed from the side of the light transmissive electrode layer (1902), as shown in
There are several unique features of this option. For example, there is no need to add or form separate colored layers and therefore it is particularly suitable for a highlight color display where the sub-pixel or pixel electrodes are of the same color.
However, it is also possible for the sealing layers to have different colors in a display device, to achieve a full color display.
In addition, the adhesive layer (1905) may be made reflective (e.g., white) to serve both as an adhesive layer and a color brightness enhancement layer. In other words, a reflective adhesive layer underneath the sealing layer can further improve color brightness by reflecting more light back to the viewer.
A further advantage of this option is that because there is no need to place colored layers or additional reflective layers directly on top of the sub-pixel or pixel electrodes, there would be less voltage loss due to the presence of the extra layers. As a result, the image transition speed could also be improved.
A further option is applicable to both a highlight color display and a full color display. This option is depicted in
As shown, an adhesive layer (2005) is directly laminated on top of the layer (2004) comprising the sub-pixel or pixel electrodes. The adhesive layer could be a single layer covering the entire area.
The adhesive layer (2005) may be a reflective layer (i.e., white). A colored layer (2006) is then laminated, printed, thermal transferred or laser transferred onto the reflective adhesive layer (2005). For a multicolor display device, different color layers are aligned with the sub-pixel or pixel electrodes. The alignment is relatively easy since the adhesive layer can be laminated onto the layer comprising the electrodes first and then the colored layers could be placed on top of the adhesive layer by using addressing mark on the electrode layer for alignment. The layer (2001) comprising the display fluid (2007) and the light transmissive electrode layer (2008) is then laminated to the adhesive layer structure (2002) to complete the display assembly.
Alternatively, in this case, the color could be absorbed by the white adhesive layer. For example, it may be accomplished by using precision printing technology to print a dye material on the white adhesive layer, and the white adhesive layer could absorb the color to display the color. One of the advantages of this option is that the white adhesive layer could enhance the reflectance efficiency of the color and cause the color to appear brighter.
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation, materials, compositions, processes, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
This application is a continuation of U.S. application Ser. No. 13/371,293, filed Feb. 10, 2012; which is continuation-in-part of U.S. application Ser. No. 13/225,184, filed Sep. 2, 2011. The above-identified applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3756693 | Ota | Sep 1973 | A |
3892568 | Ota | Jul 1975 | A |
4298448 | Muller et al. | Nov 1981 | A |
5378574 | Winnik et al. | Jan 1995 | A |
5980719 | Cherukuri et al. | Nov 1999 | A |
6198809 | Disanto et al. | Mar 2001 | B1 |
6337761 | Rogers et al. | Jan 2002 | B1 |
6373461 | Hasegawa et al. | Apr 2002 | B1 |
6486866 | Kuwahara et al. | Nov 2002 | B1 |
6517618 | Foucher et al. | Feb 2003 | B2 |
6525866 | Lin et al. | Feb 2003 | B1 |
6538801 | Jacobson et al. | Mar 2003 | B2 |
6600534 | Tanaka et al. | Jul 2003 | B1 |
6650462 | Katase | Nov 2003 | B2 |
6680726 | Gordon et al. | Jan 2004 | B2 |
6693620 | Herb et al. | Feb 2004 | B1 |
6704133 | Gates et al. | Mar 2004 | B2 |
6724521 | Nakao et al. | Apr 2004 | B2 |
6729718 | Goto et al. | May 2004 | B2 |
6751007 | Liang et al. | Jun 2004 | B2 |
6829078 | Liang et al. | Dec 2004 | B2 |
6864875 | Drzaic et al. | Mar 2005 | B2 |
6947203 | Kanbe | Sep 2005 | B2 |
6967762 | Machida et al. | Nov 2005 | B2 |
6987503 | Inoue | Jan 2006 | B2 |
6987605 | Liang et al. | Jan 2006 | B2 |
7009756 | Kishi et al. | Mar 2006 | B2 |
7019889 | Katase | Mar 2006 | B2 |
7034987 | Schlangen | Apr 2006 | B2 |
7038655 | Herb et al. | May 2006 | B2 |
7046228 | Liang et al. | May 2006 | B2 |
7050218 | Kanbe | May 2006 | B2 |
7057600 | Goden | Jun 2006 | B2 |
7057798 | Ukigaya | Jun 2006 | B2 |
7075502 | Drzaic et al. | Jul 2006 | B1 |
7226550 | Hou et al. | Jun 2007 | B2 |
7259744 | Arango et al. | Aug 2007 | B2 |
7271947 | Liang et al. | Sep 2007 | B2 |
7283119 | Kishi | Oct 2007 | B2 |
7312916 | Pullen et al. | Dec 2007 | B2 |
7342556 | Oue et al. | Mar 2008 | B2 |
7352353 | Albert et al. | Apr 2008 | B2 |
7365732 | Matsuda et al. | Apr 2008 | B2 |
7411719 | Paolini et al. | Aug 2008 | B2 |
7417787 | Chopra et al. | Aug 2008 | B2 |
7420549 | Jacobson et al. | Sep 2008 | B2 |
7474295 | Matsuda | Jan 2009 | B2 |
7495821 | Yamakita et al. | Feb 2009 | B2 |
7502162 | Lin et al. | Mar 2009 | B2 |
7545557 | Iftime et al. | Jun 2009 | B2 |
7548291 | Lee et al. | Jun 2009 | B2 |
7557981 | Liang et al. | Jul 2009 | B2 |
7652656 | Chopra et al. | Jan 2010 | B2 |
7679599 | Kawai | Mar 2010 | B2 |
7686463 | Goto | Mar 2010 | B2 |
7760419 | Lee | Jul 2010 | B2 |
7782292 | Miyasaka et al. | Aug 2010 | B2 |
7808696 | Lee et al. | Oct 2010 | B2 |
7830592 | Sprague et al. | Nov 2010 | B1 |
7852547 | Kim | Dec 2010 | B2 |
7852548 | Roh | Dec 2010 | B2 |
7911681 | Ikegami et al. | Mar 2011 | B2 |
7982941 | Lin et al. | Jul 2011 | B2 |
8072675 | Lin et al. | Dec 2011 | B2 |
8115729 | Danner et al. | Feb 2012 | B2 |
8120838 | Lin et al. | Feb 2012 | B2 |
8159636 | Sun et al. | Apr 2012 | B2 |
8164823 | Ikegami et al. | Apr 2012 | B2 |
8169690 | Lin et al. | May 2012 | B2 |
8174492 | Kim et al. | May 2012 | B2 |
8237892 | Sprague et al. | Aug 2012 | B1 |
8355196 | Yan et al. | Jan 2013 | B2 |
8395836 | Lin | Mar 2013 | B2 |
8422116 | Sprague et al. | Apr 2013 | B2 |
8466852 | Drzaic et al. | Jun 2013 | B2 |
8477405 | Ishii et al. | Jul 2013 | B2 |
8503063 | Sprague | Aug 2013 | B2 |
8570272 | Hsieh et al. | Oct 2013 | B2 |
8605354 | Zhang et al. | Dec 2013 | B2 |
20070002008 | Tam | Jan 2007 | A1 |
20070080928 | Ishii et al. | Apr 2007 | A1 |
20070273637 | Zhou et al. | Nov 2007 | A1 |
20080042928 | Schlangen et al. | Feb 2008 | A1 |
20080174531 | Sah | Jul 2008 | A1 |
20090184897 | Miyamoto | Jul 2009 | A1 |
20090213452 | Lin et al. | Aug 2009 | A1 |
20100103502 | Jacobson et al. | Apr 2010 | A1 |
20100165005 | Sprague | Jul 2010 | A1 |
20100283804 | Sprague et al. | Nov 2010 | A1 |
20110199671 | Amundson et al. | Aug 2011 | A1 |
20110217639 | Sprague | Sep 2011 | A1 |
20110234557 | Yang et al. | Sep 2011 | A1 |
20110261433 | Sprague et al. | Oct 2011 | A1 |
20110292094 | Lin | Dec 2011 | A1 |
20120007897 | Yang et al. | Jan 2012 | A1 |
20120307346 | Sprague | Dec 2012 | A1 |
20130057942 | Wang et al. | Mar 2013 | A1 |
20130176612 | Sprague et al. | Jul 2013 | A1 |
20130208338 | Wang et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1705907 | Dec 2005 | CN |
200935155 | Aug 2009 | TW |
200951599 | Dec 2009 | TW |
201122697 | Jul 2011 | TW |
WO 9953373 | Oct 1999 | WO |
WO 03016993 | Feb 2003 | WO |
Entry |
---|
U.S. Appl. No. 13/551,541, filed Jul. 17, 2012, Yang et al. |
U.S. Appl. No. 13/633,788, filed Oct. 2, 2012, Wang et al. |
U.S. Appl. No. 13/875,145, filed May 1, 2013, Wang et al. |
U.S. Appl. No. 13/952,136, filed Jul. 26, 2013, Hui Du et al. |
U.S. Appl. No. 13/973,712, filed Aug. 22, 2013, Zang et al. |
Number | Date | Country | |
---|---|---|---|
20140078036 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13371293 | Feb 2012 | US |
Child | 14083317 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13225184 | Sep 2011 | US |
Child | 13371293 | US |