Image projection via laser light sources may offer various advantages over the use of lamps as light sources. For example, diode laser light sources may be substantially smaller and consume less power than conventional lamps, yet may offer sufficient brightness for projection under many light conditions.
Color laser projection systems generally utilize three laser sources, each providing a beam of a primary color. The three beams are combined via dichroic combiner optics to form one white beam, which is raster scanned to create an image for projection. In such systems, the dichroic coatings on the combiner optics may be a significant expense in the overall cost of the projector.
One disclosed embodiment provides an image display device including a plurality of laser light sources arranged to produce angularly offset beams of light, and scanning optics configured to raster scan the angularly offset beams of light simultaneously across separate parallel lines of pixels of a display surface to form an image, wherein each beam of light scans substantially the entire display surface.
In one exemplary embodiment, illustrated in
Scanning mirror 108 continues to move the laser beams down display surface 110, the beams being separated from adjacent beams by N rows throughout the raster scan, until reaching the bottom of display surface 110. At the bottom of the image, blue laser 106 turns off first, followed by red laser 102 and green laser 104 as the lasers scan the last row of pixels. It will be appreciated that the specific order of the lasers described herein is merely exemplary, and that the lasers may be arranged in any suitable order. For example, in some embodiments, red laser 102 may be scan display surface 110 first, with either green and then blue or blue and then green following, while in other embodiments, green laser 104 may scan first, with red laser 102 and blue laser 106 following, etc. Furthermore, while the depicted embodiment scans across display surface 110 row-by-row, it will be appreciated that the scan may also be performed column-by-column (as shown schematically at 500 in
The angles between the lasers 102-106 are correlated to the separation of the beams on display surface 110. Therefore, errors in the alignment of the lasers 102-106 and/or the angles between the lasers 102-106 may result in image production errors. For example, where the lasers 102-106 are configured to scan vertical columns, if all of the lasers 102-106 are not in the same horizontal plane, an error in the position of the rows of pixels for one or more lasers 102-106 may result. Likewise, for lasers 102-106 configured to scan horizontally (as depicted), if all of the lasers 102-106 are not in the same vertical plane, then an error in the position of the columns of pixels for one or more lasers 102-106 may result. Similarly, errors in the spacing of rows or columns may occur if the lasers are in the correct plane but are separated by an incorrect angle or angles.
To help prevent and/or correct such errors, a photodetector may be included to measure and calibrate the positions of the lasers relative to each other.
In some embodiments, it may be desirable to utilize a low number N of lines of pixels by which the laser beams are separated. This is because the brightness of an image produced by the above-described method may be slightly reduced compared to systems in which the three colored beams are combined into a single white beam, as scanning mirror 108 must overscan by 2N lines of pixels on both the top and bottom of the image (for a total of 4N additional lines of pixels) so that all lines of pixels are scanned by all three laser beams. Without wishing to be bound by theory, this overscanning may cause a reduction of brightness on the order of 100%−(2N/image height). Therefore, the lower the number N of lines of pixels separating the laser beams during scanning, the lower the reduction in image intensity of the projected image compared to a system with dichroic beam combiners.
The above-described arrangement of lasers and method of raster scanning an image for projection may help to overcome cost constraints and other various problems associated with the use of dichroic beam combiners in known laser projection systems. This may help to make the disclosed optical system more suitable for use in small-scale projection systems, including but not limited to pocket-sized systems, in which low cost may be an important purchasing factor. While the disclosed arrangement of lasers produces beams that are separated by N rows of pixels, it will be appreciated that the lasers may produce beams that are separated by N columns of pixels, N diagonal rows of pixels, or any other suitable orientation of lines of pixels, and that scanning may be performed in any suitable orientation or manner.
It will further be understood that either fewer or more than the three colors of lasers could be used in system 100. For example, additional color or white or other color lasers may be provided at different angles both horizontally and vertically. Each additional laser may require farther overscan of the mirrors. This may result in less efficiency, but also may provide the benefits of additional color gamut, brightness, and/or other such features.
Furthermore, although the present disclosure includes specific embodiments, specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. The foregoing embodiments are illustrative, and no single feature, component, or action is essential to all possible combinations that may be claimed in this or later applications. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. These claims may refer to “a” or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal numbers, such as first, second, and third, for identified elements or actions are used to distinguish between the elements and actions, and do not indicate a required or limited number of such elements or actions, nor a particular position or order of such elements or actions unless otherwise specifically stated. Other combinations and subcombinations of features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4796964 | Connell et al. | Jan 1989 | A |
5193008 | Frazier et al. | Mar 1993 | A |
5614961 | Gibeau et al. | Mar 1997 | A |
5715021 | Gibeau et al. | Feb 1998 | A |
5774174 | Hardie | Jun 1998 | A |
5834766 | Suhara | Nov 1998 | A |
5877886 | Ishii et al. | Mar 1999 | A |
5920361 | Gibeau et al. | Jul 1999 | A |
6347002 | Hagelin et al. | Feb 2002 | B1 |
6426781 | Lee | Jul 2002 | B1 |
6606180 | Harada | Aug 2003 | B2 |
6724509 | Lee | Apr 2004 | B2 |
6762867 | Lippert et al. | Jun 2004 | B2 |
6800844 | Kandori et al. | Oct 2004 | B2 |
6900925 | Kato et al. | May 2005 | B2 |
6945652 | Sakata et al. | Sep 2005 | B2 |
7012723 | Yoshikawa et al. | Mar 2006 | B2 |
7099060 | Nanjyo et al. | Aug 2006 | B2 |
7142257 | Callison et al. | Nov 2006 | B2 |
7163294 | Nambudiri et al. | Jan 2007 | B2 |
7255445 | Kojima | Aug 2007 | B2 |
7367682 | Dvorkis et al. | May 2008 | B2 |
7384159 | Takeda | Jun 2008 | B2 |
7441902 | Dvorkis et al. | Oct 2008 | B2 |
7475993 | Takeda | Jan 2009 | B2 |
20020097477 | Hagelin et al. | Jul 2002 | A1 |
20030184835 | Goldberg et al. | Oct 2003 | A1 |
20050140832 | Goldman et al. | Jun 2005 | A1 |
20050140925 | Yavid et al. | Jun 2005 | A1 |
20050140930 | Dvorkis et al. | Jun 2005 | A1 |
20050141573 | Yavid et al. | Jun 2005 | A1 |
20050157377 | Goldman et al. | Jul 2005 | A1 |
20050157763 | Tan et al. | Jul 2005 | A1 |
20050243446 | Wood | Nov 2005 | A1 |
20050279922 | Wittenberg et al. | Dec 2005 | A1 |
20060039056 | Lee | Feb 2006 | A1 |
20060039059 | Ji et al. | Feb 2006 | A1 |
20060175544 | Nozaki et al. | Aug 2006 | A1 |
20100020291 | Kasazumi et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
10135418 | Feb 2003 | DE |
Number | Date | Country | |
---|---|---|---|
20080112028 A1 | May 2008 | US |