The present invention relates to a color picture tube used in a television receiver, a computer monitor or the like. In particular, the present invention relates to a color picture tube that can obtain a high quality image even with a wide deflection angle.
In a general color picture tube, as shown in
In order to achieve a self-convergence configuration for converging the three electron beams to one point on the screen, the deflection magnetic field generated by the deflection device generally is distorted into a pincushion shape at the time of deflection in an in-line direction (in the following, referred to as a horizontal direction because this direction generally corresponds to a horizontal axis of the screen) and a barrel shape at the time of deflection in a direction perpendicular to the in-line direction (in the following, referred to as a vertical direction because this direction generally corresponds to a vertical axis of the screen). Therefore, the deflection magnetic field exerts a lens effect including a diverging effect in the horizontal direction and a converging effect in the vertical direction on the three electron beams passing through this deflection magnetic field. Since the deflection magnetic field intensifies in keeping with the amount of deflection, the above-mentioned lens effect increases toward a peripheral portion of the screen. Thus, even when a beam spot formed in a central portion of the screen is made into a perfect circle, beam spots formed in the peripheral (particularly, corner) portion of the screen are distorted to have a horizontally elongated shape. Moreover, over-focusing occurs in the vertical direction, so that a vertically-elongated low-brightness haze portion tends to be formed.
JP 61(1986)-99249 A discloses a technology for alleviating such over-focusing (referred to as a “first conventional technology”).
As shown in
However, in the first conventional technology, although the electron beams can be maintained to achieve just focus both in the horizontal direction and the vertical direction, the electron beams have a large difference between an incident angle θih to the screen in the horizontal direction and an incident angle θiv to the screen in the vertical direction. In general, a magnification M of a lens system has a relationship of M ∝ (tanθo)/(tanθi) where θo is the outgoing angle from the object point to the lens system and θi is the incident angle from the lens system to the image point. Accordingly, (incident angle θiv to the screen in the vertical direction)>(incident angle θih to the screen in the horizontal direction) as in the first conventional technology illustrated in
A technology for solving such a problem is disclosed in JP 3(1991)-93135 A (referred to as a “second conventional technology”).
However, even in this second conventions technology, when the deflection angle increases excessively, there has been a problem that it becomes difficult to bring the spot shape in the peripheral portion of the screen closer to a perfect circle.
First, there is a problem that the horizontally elongated spot distortion in the peripheral portion of the phosphor screen cannot be corrected sufficiently due to an influence of a spherical aberration of the main lens. The reason follows. In the second conventional technology, when attempting to alleviate the horizontally-elongated spot distortion in the peripheral portion of the screen, the electron beams passing through the lens system travel close to an edge of the main lens 11, especially in the horizontal direction as shown in
In order to avoid the above, if attempting to bring the electron beam passing position in the main lens 11 in the horizontal direction as far inwardly as possible, the second four-pole lens 14 that serves to diverge the electron beams outward in the horizontal direction and converge them inward in the vertical direction becomes useless.
In other words, the conventional technologies have had a problem that, when the deflection angle increases excessively and the deflection magnetic field intensifies too much, the horizontally elongated spot distortion in the peripheral portion cannot be corrected sufficiently.
It is an object of the present invention to provide a color picture tube that can reduce a horizontally-elongated spot distortion in a peripheral portion of a screen even with an increased deflection angle.
In order to achieve the above-mentioned object, a color picture tube of the present invention provides a color picture tube, with three electron beams arranged in an in-line manner being emitted from an electron gun. When a spot formed in a central portion of a screen is just in focus, the spot in the central portion of the screen has a dimension along the in-line direction smaller than that along a direction perpendicular to the in-line direction.
This makes it possible to bring a spot shape in a peripheral portion of the screen closer to a perfect circle easily. As a result, a display resolution of the color picture tube can be enhanced, and the generation of moiré can be suppressed, thereby obtaining a high quality image.
In the above-described color picture tube of the present invention, it is preferable that a main lens portion formed in the electron gun has a lens magnification along the in-line direction smaller than that along the direction perpendicular to the in-line direction. Here, the “main lens portion” refers to an entire electron lens system formed between a crossover point of the electron beams and a spot point on the screen.
This makes it possible to vertically-elongate a spot shape in the central portion of the screen.
Furthermore, in the color picture tube of the present invention, it is preferable that the electron beams reaching the central portion of the screen have an incident angle to the screen along the in-line direction larger than that along the direction perpendicular to the in-line direction. Alternatively, it is preferable that an electron beam emitting region of a cathode in the electron gun has a dimension along the in-line direction smaller than that along the direction perpendicular to the in-line direction.
This makes it possible to vertically-elongate the spot shape in the central portion of the screen easily.
The following is a description of an embodiment of the present invention, with reference to the accompanying drawings.
Since an overall configuration of a color picture tube of the present invention is substantially the same as the conventional color picture tube illustrated in
Among the electrodes constituted as above, the first focusing electrode 18 is supplied with a first focus voltage Vfoc1, the second focusing electrode 19 is supplied with a voltage obtained by superimposing a dynamic voltage Vdyn on a second focus voltage Vfoc2, and the anode electrode 20 is supplied with a high voltage Va.
At the time of deflection in the central portion of the screen, the dynamic focus voltage Vdyn is zero, resulting in Vfoc2+Vdyn<Vfoc1. On the other hand, at the time of deflection in the peripheral portion of the screen, the dynamic voltage Vdyn increases in keeping with the amount of deflection. Accordingly, as a deflection angle increases, Vfoc2+Vdyn becomes closer to Vfoc1, then achieving Vfoc2+Vdyn=Vfoc1, or even Vfoc2+Vdyn>Vfoc1 in some cases.
In the central portion of the screen, as shown in
Because of this lens system, the incident angle θih to the screen in the horizontal direction becomes larger than the incident angle θiv to the screen in the vertical direction in the central portion of the screen. Thus, the lens magnification in the horizontal direction becomes smaller than that in the vertical direction, so that the spot in the central portion of the screen achieves a vertically-elongated shape.
As described above, in a general in-line self-convergence type color picture tube, the spot shape of an electron beam is more likely to be distorted into a horizontally-elongated shape (a shape elongated along the in-line direction) in the peripheral portion of the screen than in the central portion thereof. The present invention is directed to a technology that adopts the above-described configuration so as to bring the spot shape in the central portion of the screen into a vertically-elongated shape whose horizontal dimension is small and vertical dimension is large, thereby alleviating the spot distortion in the peripheral portion of the screen. By bringing the spot shape in the central portion of the screen into a vertically-elongated shape as mentioned above, it becomes easier to make the incident angle θih to the screen in the horizontal direction and the incident angle θiv to the screen in the vertical direction substantially equal in the peripheral (corner) portion of the screen where the deflection angle is large, without being affected by a spherical aberration of the main lens. In addition, since the electron beams do not pass through the edge of the main lens, they are neither affected by the spherical aberration nor over-focused.
In the electron gun described in the above embodiment, a four-pole lens 28 having a converging effect in the horizontal direction and a diverging effect in the vertical direction in the central portion of the screen further may be provided on the side of the crossover point as shown in
Furthermore, as a means of carrying out the present invention, an electron beam emitting region of the cathode in the electron gun may have a shape whose horizontal dimension is smaller than its vertical dimension. The spot at the center of the phosphor screen is obtained by mapping the electron beam emitting region of the cathode onto the phosphor screen with electrostatic lenses of the electron gun. Therefore, when the electron beam emitting region of the cathode has a horizontal dimension smaller than its vertical dimension, the spot at the center of the phosphor screen can be formed into a vertically-elongated shape whose horizontal dimension is small and vertical dimension is large. In this case, to be more effective, it is preferable that the horizontal dimension of the apertures for passing electron beams in the control electrode is made smaller than the vertical dimension thereof, that the horizontal thickness of the control electrode is made larger than the vertical thickness thereof, or that the horizontal dimension of the apertures for passing electron beams in the accelerating electrode is made larger than the vertical dimension thereof.
Since electron beams often are aligned along the horizontal direction of the screen in in-line self-convergence type color picture tubes, the embodiment of the present invention has been described by referring the in-line direction as the horizontal direction and the direction perpendicular to the in-line direction as the vertical direction. However, for example, in the case of using an electron gun arranged such that the in-line direction of the electron beams corresponds to the vertical direction of the screen, it is needless to say that the in-line direction is the vertical direction and the direction perpendicular to the in-line direction is the horizontal direction, contrary to the above-described embodiment.
Also, the number and shape of the electrodes constituting the electron gun and the number and shape of the apertures for passing electron beams to be formed in each electrode are not limited to the example of the embodiment described above but may be changed suitably according to an intended purpose.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The embodiments disclosed in this application are to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
2001-108177 | Apr 2001 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP02/03319 | 4/3/2002 | WO | 00 | 7/25/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/084694 | 10/24/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4814670 | Suzuki et al. | Mar 1989 | A |
5061881 | Suzuki et al. | Oct 1991 | A |
5367230 | Iguchi et al. | Nov 1994 | A |
5539285 | Iguchi et al. | Jul 1996 | A |
5663609 | Kamohara et al. | Sep 1997 | A |
5694004 | Kimiya et al. | Dec 1997 | A |
5994826 | Ueno et al. | Nov 1999 | A |
6339293 | Kimiya et al. | Jan 2002 | B1 |
Number | Date | Country |
---|---|---|
0 856 869 | Aug 1998 | EP |
47-22210 | Jul 1972 | JP |
61-99249 | May 1986 | JP |
3-93135 | Apr 1991 | JP |
5-135708 | Jun 1993 | JP |
6-236738 | Aug 1994 | JP |
06-236738 | Aug 1994 | JP |
7-147129 | Jun 1995 | JP |
8-212947 | Aug 1996 | JP |
10-289671 | Oct 1998 | JP |
11-31464 | Feb 1999 | JP |
11-167880 | Jun 1999 | JP |
1994-16418 | Jul 1994 | KR |
1998-71181 | Oct 1998 | KR |
Number | Date | Country | |
---|---|---|---|
20040113534 A1 | Jun 2004 | US |