Embodiments of the invention relate to digital color image sensors, and more particularly, to an enhanced dynamic range sensor that utilizes a Bayer pattern color array having pixels with different exposure times to generate the data for color pixels in an image.
Digital image capture devices are becoming ubiquitous in today's society. High-definition video cameras for the motion picture industry, image scanners, professional still photography cameras, consumer-level “point-and-shoot” cameras and hand-held personal devices such as mobile telephones are just a few examples of modern devices that commonly utilize digital color image sensors to capture images. Regardless of the image capture device, in most instances the most desirable images are produced when the sensors in those devices can capture fine details in both the bright and dark areas of a scene or image to be captured. In other words, the quality of the captured image is often a function of the amount of detail at various light levels that can be captured. For example, a sensor capable of generating an image with fine detail in both the bright and dark areas of the scene is generally considered superior to a sensor that captures fine detail in either bright or dark areas, but not both simultaneously.
Thus, higher dynamic range becomes an important concern for digital imaging performance. For sensors with a linear response, their dynamic range can be defined as the ratio of their output's saturation level to the noise floor at dark. This definition is not suitable for sensors without a linear response. For all image sensors with or without linear response, the dynamic range can be measured by the ratio of the maximum detectable light level to the minimum detectable light level. Prior dynamic range extension methods fall into two general categories: improvement of sensor structure, a revision of the capturing procedure, or a combination of the two.
Structure approaches can be implemented at the pixel level or at the sensor array level. For example, U.S. Pat. No. 7,259,412 introduces a HDR transistor in a pixel cell. A revised sensor array with additional high voltage supply and voltage level shifter circuits is proposed in U.S. Pat. No. 6,861,635. The typical method for the second category is to use different exposures over multiple frames (e.g. long and short exposures in two different frames to capture both dark and bright areas of the image), and then combine the results from the two frames. The details are described in U.S. Pat. No. 7,133,069 and U.S. Pat. No. 7,190,402. In U.S. Pat. No. 7,202,463 and U.S. Pat. No. 6,018,365, different approaches with combination of two categories are introduced.
Embodiments of the invention are directed to the use of a Bayer pattern array in digital image sensors to enhance the dynamic range of the sensors. In some embodiments, each Bayer pattern in the array can include three different pixels having a first exposure, and a fourth pixel (which is the same color as one of the other pixels in the array) having a second exposure. The dynamic range of the Bayer pattern array can be enhanced by using different exposure times for the pixels. Each pixel can capture only one channel (i.e. either red (R), green (G) or blue (B) light). Interpolation of neighboring pixels, including those having different exposure times, can enable the pixels in the Bayer pattern array to generate missing color information and effectively become a color pixel, and can allow the Bayer pattern array to have a higher dynamic range. The Bayer pattern arrays can be suitable for consumer electronics imagers such as those found in mobile telephone cameras, where the available pixel space is limited.
One exemplary Bayer pattern array can be formed as a 4×4 array of individual pixels from a repeating 2×2 pattern, which is similar to a conventional 2×2 Bayer pattern, except that each pattern contains two green pixels “G—long exposure” (GL) and “G—short exposure” (GS) arranged in a diagonal orientation, and a R and B pixel in the opposite diagonal orientation.
The GL pixel can have a longer exposure time relative to the GS pixel and can be more capable of capturing the dark areas of a scene (greater sensitivity to light), while the GS pixel can be more capable of capturing the bright areas of a scene. Thus, the pattern has a structure similar to a conventional Bayer pattern, but different timing logic. The color green can be chosen as the repeating color in each pattern because green is generally more sensitive to the human eye than other colors. With GL and GS present in every pattern, there can be twice the number of G pixels as R and B pixels to provide low-light details.
The R and B pixels in each pattern each can have the same exposure time, either long or short, depending on the view to be captured. For example, for exterior views, short exposure times equal to the exposure for GS can be used for the R and B pixels, whereas for interior views, long exposures equal to the exposure for GL can be used. In this arrangement, when the R and B pixels are set to a long exposure time along with the GL pixel, the pattern can provide intensity and color information for a dark scene. However, because the long exposure pixels can become saturated in a bright scene, only limited information can be captured in a bright scene. Thus, the bright regions can be somewhat monochromatic. Similarly, when the R and B pixels are set to a short exposure time along with the GS pixel, the pattern can provide intensity and color information for a bright scene, but only limited information for a dark scene.
In a practical example, as the camera is moved into an interior area, the R and B pixels can be automatically or manually switched to match the exposure time of GL, such that pixels GL, R and B are set to a longer exposure to capture darker images, while the GS pixel is set to a shorter exposure time to capture bright images. In general, therefore, within each pattern there can always be three pixels with the same exposure time, and one pixel with a different exposure time.
As described above, each of the pixels in the exemplary Bayer pattern array are used to provide color pixel output information (information for all three colors, R, G and B). Because each pixel only receives a single color, the Bayer pattern array is a sub-sampled pattern, and the missing information for the other two colors can be obtained by interpolating adjacent pixel information.
To interpolate the adjacent pixels, it can be beneficial to use existing Bayer pattern interpolation methods without modification to the extent possible. However, before these existing interpolation methods can be used, the pixels in the Bayer pattern arrays can be combined using a weighted average method. The effect of combining pixels of different exposure times is that the overall dynamic range for the array can be increased.
To combine pixels according to the weighted average method, the averaging of nearby G pixels and R pixels is performed to obtain combined G and R pixels. First, one or more row readouts are performed to read out the pixel data from one or more rows, and this raw pixel data is stored in memory. Next, pixels from the raw array can be averaged to compute each pixel in a combined array, which is again stored in memory.
After this combining step is completed for all pixels and the combined array is stored, the combined array is now in the form of repeating conventional Bayer patterns. As the combined array is created, any existing Bayer pattern interpolation algorithm can be used (e.g. a bilinear interpolation algorithm), executed by a processor and/or a state machine, for example, to interpolate the colors from adjacent combined pixels and compute R, G and B color pixel output values for every pixel in the array.
At times, averaging like-colored nearby pixels with different exposure times may not yield an optimal image. Therefore, in another embodiment of the invention, mixture control scaling factors, or weight (e.g. 0.3 GS+0.7 GL) can be used instead of averaging. Exemplary scaling factors αi (i=R, G, B) can be normalized to be between [0,1]. Pixels with one exposure time (e.g. a short exposure time) can be multiplied by αi, while the pixels with another exposure time can be multiplied by 1−αi. The result is the summation of the two. Scaling can be implemented before interpolation or during raw pixel readout.
In addition, an offset can be added to either the scaled or averaged result to change the brightness levels. The offset, or brightness control factor, can be implemented as a 3 by 1 vector. For 8-bit images, its elements can range between [−255,255]. The brightness control factor can be added to the pixel output values channel by channel to adjust the overall intensity levels (brightness) of the outputs. In addition, the factors can be changed according to the exposure level. Therefore, for a given Bayer array pattern, multiple brightness control factors can be utilized depending on the exposure level. This operation can be performed before or after Bayer pattern interpolation, during the raw pixel readout (ADC control), or during the combining step.
a illustrates an exemplary Bayer pattern array formed as a 4×4 array of individual pixels according to embodiments of the invention.
b is a representation of an exemplary image including a bright area (outside lighting seen through window) and a dark area (room interior) taken with a digital image sensor containing the exemplary Bayer pattern array of
a illustrates another exemplary Bayer pattern array formed as a 4×4 array of individual pixels according to embodiments of the invention.
b is a representation of an exemplary image including a bright area and a dark area taken with a digital image sensor containing the exemplary Bayer pattern array of
c illustrates an effect of the exemplary array of
a illustrates an exemplary Bayer pattern array formed as a 4×4 array of individual pixels, and the application of an exemplary de-mosaic methodology to the array to generate a combined array according to embodiments of the invention.
b illustrates the exemplary averaging of G and B pixels of different exposures to generate combined pixels GC and BC according to embodiments of the invention.
c illustrates an exemplary combined array resulting from the de-mosaic methodology shown in
d is a representation of an exemplary image captured with a digital image sensor containing the Bayer pattern array of
e is a representation of an exemplary image captured with a digital image sensor containing the Bayer pattern array of
f is a representation of an exemplary image captured with a digital image sensor containing the Bayer pattern array of
In the following description of preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific embodiments in which the invention can be practiced. It is to be understood that other embodiments can be used and structural changes can be made without departing from the scope of the embodiments of this invention.
Embodiments of the invention are directed to the use of a Bayer pattern array in digital image sensors to enhance the dynamic range of the sensors. In some embodiments, each Bayer pattern in the array can include three different pixels having a first exposure, and a fourth pixel (which is the same color as one of the other pixels in the array) having a second exposure. The dynamic range of the Bayer pattern array can be enhanced by using different exposure times for the pixels. Each pixel can capture only one channel (i.e. either red (R), green (G) or blue (B) light). Interpolation of neighboring pixels, including those having different exposure times, can enable the pixels in the Bayer pattern array to generate missing color information and effectively become a color pixel, and can allow the Bayer pattern array to have a higher dynamic range. The Bayer pattern arrays can be suitable for consumer electronics imagers such as those found in mobile telephone cameras, where the available pixel space is limited.
Although the Bayer pattern arrays according to embodiments of the invention may be described and illustrated herein primarily in terms of sensors for consumer electronics devices, it should be understood that any type of image capture device for which an enhanced dynamic range is desired can utilize the sensor embodiments described herein. Furthermore, although the Bayer pattern arrays may be described and illustrated herein in terms of 4×4 arrays of pixels formed from four 2×2 Bayer patterns, other color pattern and array sizes can be utilized as well. In addition, although the pixels in the Bayer pattern arrays may be described as R, G and B pixels, in other embodiments of the invention colors other than R, G, and B can be used, such as the complementary colors cyan, magenta, and yellow, and even different color shades (e.g. two different shades of blue) can be used.
a illustrates an exemplary Bayer pattern array 100 formed as a 4×4 array of individual pixels 102 according to embodiments of the invention. In the example of
The GL pixel can have a longer exposure time relative to the GS pixel and can be more capable of capturing the dark areas of a scene (greater sensitivity to light), while the GS pixel can be more capable of capturing the bright areas of a scene. Thus, pattern 104 has a structure similar to a conventional Bayer pattern, but different timing logic. The color green can be chosen as the repeating color in each pattern 104 because green is generally more sensitive to the human eye than other colors (i.e. at low light levels, the human eye can usually see more details and contrast in green images than in images of other colors). With GL and GS present in every pattern 104, there can be twice the number of G pixels as R and B pixels to provide low-light details.
The R and B pixels in each pattern each can have the same exposure time, either long or short, depending on the view to be captured. For example, for exterior views, short exposure times equal to the exposure for GS can be used for the R and B pixels, whereas for interior views, long exposures equal to the exposure for GL can be used. So, for example, for exterior views, the GS, R and B pixels of a pattern can be set to a shorter exposure time to capture bright images, whereas the GL pixel can be set to a longer exposure time to capture dark images. In this arrangement, when the R and B pixels are set to a long exposure time along with the GL pixel, the pattern can provide intensity and color information for a dark scene. However, because the long exposure pixels can become saturated in a bright scene, only limited information can be captured in a bright scene. Thus, the bright regions can be somewhat monochromatic (i.e. shades of gray). Similarly, when the R and B pixels are set to a short exposure time along with the GS pixel, the pattern can provide intensity and color information for a bright scene, but only limited information for a dark scene.
In a practical example, as the camera is moved into an interior area, the R and B pixels can be automatically or manually switched to match the exposure time of GL, such that pixels GL, R and B are set to a longer exposure to capture darker images, while the GS pixel is set to a shorter exposure time to capture bright images. In general, therefore, within each pattern 104 there can always be three pixels with the same exposure time, and one pixel with a different exposure time.
b is a representation of an exemplary image 106 including a bright area (outside lighting seen through window) 110 and a dark area (room interior) 108 taken with a digital image sensor containing the Bayer pattern array of
a illustrates an exemplary Bayer pattern array 200 formed as a 4×4 array of individual pixels 202 according to embodiments of the invention. In the example of
The GL, RL and BL pixels can have longer exposure times relative to the GS, RS and BS pixels and can be more capable of capturing the dark areas of a scene (greater sensitivity to light), while the GS, RS and BS pixels can be more capable of capturing the bright areas of a scene. Thus, patterns 204 and 212 have a structure similar to a conventional Bayer pattern, but different timing logic. In the embodiment of FIG. 2a, the RL, GL and BL pixels of pattern 212 can provide intensity and color information for a dark scene, while the RS, GS and BS pixels of pattern 204 can provide intensity and color information for a bright scene.
As described above, the single repeating pattern in the previous embodiment (the exemplary Bayer pattern array of
b is a representation of an exemplary image 206 including bright area (outside lighting seen through window) 210 and dark area (room interior) 208 taken with a digital image sensor containing the Bayer pattern array of
c illustrates an exemplary effect of the embodiment of
As described above, each of the pixels in the Bayer pattern arrays of
To interpolate the adjacent pixels, it can be beneficial to use existing Bayer pattern interpolation methods without modification to the extent possible. However, before these existing interpolation methods can be used, the pixels in the Bayer pattern arrays can be combined using a weighted average method. The effect of combining pixels of different exposure times is that the overall dynamic range for the array can be increased.
a illustrates an exemplary Bayer pattern array 300 formed from a 4×4 array of individual pixels 302, and the application of an exemplary weighted average method to the array according to embodiments of the invention. In the example of
In
b illustrates the averaging of G and B pixels to generate combined pixels GC and BC according to embodiments of the invention. This averaging step can be performed for all nearby pixels of the same color that have opposite (i.e. short and long) exposures. It should be noted that although the example of
c illustrates the result of the weighted average methodology according to embodiments of the invention, when combined array 322 has been fully computed from the raw array 300.
After this combining step is completed for all pixels and the combined array 322 is stored, the combined array is now in the form of repeating conventional Bayer patterns 324. As the combined array 322 is created, any existing Bayer pattern interpolation algorithm can be used (e.g. a bilinear interpolation algorithm), executed by a processor and/or a state machine, for example, to interpolate the colors from adjacent combined pixels and compute R, G and B color pixel output values for every pixel in the array. Note that it is not necessary that all raw row data be read out and stored before combining can begin, and it is not necessary that the averaging of all pixels be completed before the interpolation algorithms can be used. Instead, pipelined processing can be utilized so that current pixels can be read out while previously read out pixels can be processed.
At times, averaging like-colored nearby pixels with different exposure times may not yield an optimal image. Therefore, in another embodiment of the invention, mixture control scaling factors, or weight (e.g. 0.3 GS+0.7 GL) can be used instead of averaging. Exemplary scaling factors αi (i=R, G,B) can be normalized to be between [0,1]. Pixels with one exposure time (e.g. a short exposure time) can be multiplied by αi, while the pixels with another exposure time can be multiplied by 1−αi. The result is the summation of the two. Scaling can be implemented before interpolation or during raw pixel readout.
In addition, an offset can be added to either the scaled or averaged result to change the brightness levels. The offset, or brightness control factor, can be implemented as a 3 by 1 vector. For 8-bit images, its elements can range between [−255,255]. The brightness control factor can be added to the pixel output values channel by channel to adjust the overall intensity levels (brightness) of the outputs. In addition, the factors can be changed according to the exposure level. Therefore, for a given Bayer array pattern, multiple brightness control factors can be utilized depending on the exposure level. This operation can be performed before or after Bayer pattern interpolation, during the raw pixel readout (ADC control), or during the combining step at 314 and 318 in
d is a representation of an image 306 including bright area (outside lighting seen through window) 310 and dark area (room interior) 308 taken with a digital image sensor containing the Bayer pattern array of
e is similar to
f is similar to
In other embodiments, different scaling factors could be used for different colors (e.g. scale all G pixels by 0.7), which could enhance a particular color in a particular area (e.g. the bright area), for example. These scaling factors can be set automatically by some algorithm, or could be adjusted manually. For example, if an imager detects and estimates a lot of green in a bright area, the processor could change the scaling factors for R, G and B to balance out the color ratios or set the color ratios to a user-configurable setting. For example, a user wishing to capture a sunset may set the color ratios to emphasize red.
Although embodiments of this invention have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of embodiments of this invention as defined by the appended claims.