Even after long, expensive coloring sessions, consumers who dye their hair report that a significant portion of the hair dye is lost within the first few washes. Most common commercial hair dyes consist of large chromophores (dye molecules) that are deposited within the hair fiber through a process of hair swelling and dye deposition. Since these chromophores are not covalently attached to the hair itself, they commonly leach from the hair during routine washing and conditioning. This is a nuisance for consumers and requires routine trips to the salon and the exhaustive use of chemicals, some of which can cause permanent damage to the hair and harm to the environment. While the search continues for more attractive and environmentally greener ways to dye hair, the need remains for formulations which can reduce the amount of color loss, thereby resulting in fewer trips to the salon and a reduction in the use of harmful chemicals.
Provided herein are methods of preserving color dye in hair comprising the application of certain cationic polyurethane based compositions.
Also provided herein are methods for determining and evaluating the color retention capabilities of cosmetic compositions through the use of dialysis techniques.
A composition, process, or method described herein that “consists essentially of” a cationic polyurethane and other components means that the recited cationic polyurethane is the only polyurethane present in the recited composition, process, or method. Thus, “consists essentially of” or “consisting essentially of” is open ended for all terms except for the inclusion of additional polyurethanes, i.e., only the recited cationic polyurethane is present.
A composition, process, or method described herein that “consists of” a cationic polyurethane and other components means that only the recited components are present. In other words, “consisting of” excludes any element, step, or ingredient not specified. “Consists of” and “consisting of” are used interchangeably.
“Comprising” is inclusive or open-ended and does not exclude additional, un-recited elements or method steps.
As used herein, “cationic polyurethanes” refer to thermoplastic polymers comprising carbamate (urethane) groups and which bear an overall net positive charge at pH≤7. In some aspects, the cationic polyurethanes described herein bear an overall net positive charge at pH from about 3.7 to about 6.5, from about 3.7 to about 6.0, or from about 3.7 to about 5.5. Unless otherwise specified, cationic polyurethanes, when used herein, include amphoteric/cationic polyurethanes. In one aspect, however, cationic polyurethanes do not encompass amphoteric/cationic polyurethanes.
As used herein, “amphoteric polyurethanes” refer to thermoplastic polymers comprising carbamate (urethane) groups and which can act both as a cationic or an anionic polyurethanes depending on neutralization method. An “amphoteric/cationic polyurethane” means that the described amphoteric species is one which acts as cationic polyurethane when neutralized with an acid, e.g., lactic acid.
“Young's modulus (or the modulus of elasticity, tensile modulus)” is a measure of the stiffness of a solid polymer film. Young's modulus, E, can be calculated by dividing the tensile stress by the extensional strain in the elastic (initial, linear) portion of the stress-strain curve. The Young's modulus of the cationic polyurethane can be determined by a protocol defined to measure mechanical properties, and is developed in reference to ASTM D638, ASTM D412, test guidelines as described below in Example 2.
The “elongation at break (also known as fracture strain, ultimate elongation)” is the ratio between changed length and initial length after breakage of the solid polymer film. The elongation at break of the cationic polyurethane can be determined by a protocol defined to measure mechanical properties, and is developed in reference to ASTM D638, ASTM D412, test guidelines as described below in Example 2.
The “moisture uptake” is the measure of water adsorbed by the solid polymer film. The method for determining the moisture uptake of the solid polymer film is provided in Example 3.
The “sensory score” is determined by the performance of the hair fixative. In particular, the tress with the composition applied is blow dried for 90 seconds. The tresses are prepared in duplicate and blinded randomly and evaluated for natural feeling and overall sensory attributes on a scale of −2 to 2 by trained sensory analysts under blinded conditions. Sensory analysts are licensed hair stylists and cosmetic scientists with significant long-term experience evaluating sensory attributes of hair. Sensory analysts assign a score of −2 to tresses deemed entirely undesirable, a score of +2 to entirely soft, natural feeling and appearing hair, and intermediate scores between these two extremes.
As used herein, “preserving hair color”, “reducing the loss of hair color”, “reducing color loss in dyed hair”, or similar means i.e. the total color change (ΔE) or total chroma change (ΔC) due to hair dye loss in dyed samples treated with the disclosed composition as measured by colorimetery is less than the total color change (ΔE) or total chroma change (ΔC) in hair which has been dyed but not treated with a disclosed composition.
Provided herein are specific combinations of WBPU properties that have been found to result in cosmetic compositions (e.g., hair products) that are capable of reducing color loss in dyed hair (e.g., human hair). Those properties include e.g., a combination of certain mechanical properties, a combination of certain chemical properties, or a combination of both mechanical and chemical properties.
The combination of mechanical properties described herein include the Young's modulus (e.g., above 150 MPa), the elongation at break (e.g., from about 15% to about 300%), and hydrophobicity (moisture uptake, e.g., less than 10%).
In one aspect, the Young's modulus of the cationic polyurethane should be above about 150 MPa. For example, the Young's modulus of the cationic polyurethane in the disclosed compositions may be above about 160 MPa, above about 170 MPa, above about 180 MPa, above about 190 MPa, above about 200 MPa, above about 210 MPa, above about 220 MPa, above about 230 MPa, above about 240 MPa, above about 250 MPa, above about 260 MPa, above about 270 MPa, above about 280 MPa, above about 290 MPa, above about 300 MPa, above about 310 MPa, above about 320 MPa, above about 330 MPa, above about 340 MPa, above about 350 MPa, above about 360 MPa, above about 370 MPa, above about 380 MPa, above about 390 MPa, above about 400 MPa, above about 410 MPa, above about 420 MPa, above about 430 MPa, above about 440 MPa, above about 450 MPa, above about 460 MPa, above about 470 MPa, above about 480 MPa, above about 490 MPa, above about 500 MPa, above about 510 MPa, above about 520 MPa, above about 530 MPa, above about 540 MPa, or above 550 MPa. In other aspects, the Young's modulus of the cationic polyurethane should be between about 150 MPa and about 500 MPa. For example, the Young's modulus of the cationic polyurethane in the disclosed compositions may be between about 150 MPa and about 400 MPa, between about 150 MPa and about 350 MPa, between about 170 MPa and about 390 MPa, between about 180 MPa and about 320 MPa, between about 190 MPa and about 300 MPa, between about 200 MPa and about 290 MPa, or between about 210 MPa and about 280 MPa.
In one aspect, the elongation at break of the cationic polyurethane should be from about 15% to about 300%. For example, the elongation at break of the cationic polyurethane in the disclosed composition may be from about 20% to about 300%, from about 25% to about 300%, from about 40% to about 280%, from about 100% to about 280%, from about 100% to about 250%, from about 150% to about 250%, from about 200% to about 250%, from about 210% to about 250%, about 30 to about 150%, from about 15% to about 150%, from about 150% to about 300%, from about 50% to about 250%; from about 75% to about 225%, or from about 100% to about 200%. The elongation break may be optionally combined with one or more of the Young's modulus values described in the paragraph above or any one of the Young's modulus values described in the remainder of the disclosure.
In one aspect, the moisture uptake of the cationic polyurethane should be less than about 10%. For example, the moisture uptake of the cationic polyurethane in the disclosed compositions may be less than about 9.5%, less than about 9%, less than about 8.5%, less than about 8%, less than about 7.5%, less than about 7%, less than about 6.5%, less than about 6%, less than about 5.5%, less than about 5%, less than about 4.5%, less than about 4%, less than about 3.5%, less than about 3%, less than about 2.5%, less than about 2%, less than about 1.5%, less than about 1%, less than about 0.5%, or is about 0%. In one aspect, the moisture uptake of the cationic polyurethane in the disclosed compositions should be from about 0% to about 10%. For example, the moisture uptake may be from about 0% to about 8%, from about 2% to about 8%, or from about 3% to about 7%. The moisture uptake may be optionally combined with one or more of the Young's modulus values, one or more of the elongation break values, or both as described in the paragraphs above or in the remainder of the disclosure.
As shown in the Exemplification section below, cationic polyurethanes having the Young's modulus, elongation at break, and moisture uptake described above minimize the color loss in hair which has been dyed e.g., by chemical means.
A method of preserving hair color in color dyed human hair, the method comprising applying to the hair a composition comprising a cationic polyurethane having a Young's modulus above 150 MPa, an elongation at break from about 15% to about 300%, and a moisture uptake of less than 10%. Also provided are methods of preserving hair color in color dyed human hair, the method comprising applying to the hair a composition consisting essentially of a cationic polyurethane; a neutralizer; and an oil, wherein the cationic polyurethane has a Young's modulus above 150 MPa; an elongation at break from about 15% to about 300%; and a moisture uptake of less than 10%.
In some aspects, the cationic polyurethane in the provided methods is a salt of the formula: [W, V, Y and Z]X−, wherein W is the product formed from polycarbonate polyol monomer; V is the product formed from polyisocyanate monomer; Y is the product formed from C1-8alkyldiol monomer; Z is the product formed from C1-8aminoalkyldiol monomer; X is a neutralizing ion; the molecular weight of W is about 1,000 g/mol; the molar ratio of V:W is 1:0.18 to about 1:0.32; the molar ratio of V:Y is 1:0.24 to about 1:0.72; and the molar ratio of V:Z is 1:0.08 to about 1:0.47. In one alternative, the cationic polyurethane in the provided methods is a salt of the formula: [W, V, Y and Z]X−, wherein W is the product formed from polycarbonate polyol monomer; V is the product formed from polyisocyanate monomer; Y is the product formed from C1-8alkyldiol monomer; Z is the product formed from C1-8aminoalkyldiol monomer; X is a neutralizing ion; the molecular weight of W is about 2,000 g/mol; the molar ratio of V:W is 1:0.08 to about 1:0.18; the molar ratio of V:Y is 1:0.36 to about 1:0.82; and the molar ratio of V:Z is 1:0.08 to about 1:0.49. In another alternative, the cationic polyurethane in the provided methods is a salt of the formula: [W, V, Y and Z]X−, wherein W is the product formed from polycarbonate polyol monomer; V is the product formed from polyisocyanate monomer; Y is the product formed from C1-8alkyldiol monomer; Z is the product formed from C1-8aminoalkyldiol monomer; X is a neutralizing ion; the molecular weight of W is about 3,000 g/mol; the molar ratio of V:W is 1:0.05 to about 1:0.13; the molar ratio of V:Y is 1:0.4 to about 1:0.85; and the molar ratio of V:Z is 1:0.08 to about 1:0.49.
In one alternative the cationic polyurethane in the provided methods is a salt of the formula: [W, V, Y, Z, and Z1]X−, wherein W is the product formed from polycarbonate polyol monomer; V is the product formed from polyisocyanate monomer; Y is the product formed from C1-8alkyldiol monomer; Z is the product formed from C1-8aminoalkyldiol monomer; Z1 is the product formed from ethoxylated polyol monomer; X is a neutralizing ion; the molecular weight of W is about 1,000 g/mol; the molar ratio of V:W is 1:0.19 to about 1:0.33; the molar ratio of V:Y is 1:0.19 to about 1:0.7; the molar ratio of V:Z is 1:0.08 to about 1:0.49; and the molar ratio of V:Z1 is 1:0 to about 1:0.03. In another alternative, the cationic polyurethane in the provided compositions is a salt of the formula: [W, V, Y, Z, and Z1]X−, wherein W is the product formed from polycarbonate polyol monomer; V is the product formed from polyisocyanate monomer; Y is the product formed from C1-8alkyldiol monomer; Z is the product formed from C1-8aminoalkyldiol monomer; Z1 is the product formed from ethoxylated polyol monomer; X is a neutralizing ion; the molecular weight of W is about 2,000 g/mol; the molar ratio of V:W is 1:0.09 to about 1:0.18; the molar ratio of V:Y is 1:0.31 to about 1:0.8; the molar ratio of V:Z is 1:0.09 to about 1:0.51; and the molar ratio of V:Z1 is 1:0 to about 1:0.03. In another alternative, the cationic polyurethane in the provided methods is a salt of the formula: [W, V, Y, Z, and Z1]X−, wherein W is the product formed from polycarbonate polyol monomer; V is the product formed from polyisocyanate monomer; Y is the product formed from C1-8alkyldiol monomer; Z is the product formed from C1-8aminoalkyldiol monomer; Z1 is the product formed from ethoxylated polyol monomer; X is a neutralizing ion; the molecular weight of W is about 3,000 g/mol; the molar ratio of V:W is 1:0.05 to about 1:0.13; the molar ratio of V:Y is 1:0.36 to about 1:0.83; the molar ratio of V:Z is 1:0.09 to about 1:0.52; and the molar ratio of V:Z1 is 1:0 to about 1:0.03.
In another alternative, the cationic polyurethane in the provided methods is a salt of the formula: [W, V, Y, Z, and Z2]X−, wherein W is the product formed from polycarbonate polyol monomer; V is the product formed from polyisocyanate monomer; Y is the product formed from C1-8alkyldiol monomer; Z is the product formed from C1-8aminoalkyldiol monomer; Z2 is the product formed from hydroxylated alkyl acid monomer; X is a neutralizing ion; the molecular weight of W is about 1,000 g/mol the molar ratio of V:W is 1:0.19 to about 1:0.33; the molar ratio of V:Y is 1:0.14 to about 1:0.44; the molar ratio of V:Z is 1:0.08 to about 1:0.47; and the molar ratio of V:Z2 is 1:0.05 to about 1:0.33. In another alternative, the cationic polyurethane in the provided methods is a salt of the formula: [W, V, Y, Z, and Z2]X−, wherein W is the product formed from polycarbonate polyol monomer; V is the product formed from polyisocyanate monomer; Y is the product formed from C1-8alkyldiol monomer; Z is the product formed from C1-8aminoalkyldiol monomer; Z2 is the product formed from hydroxylated alkyl acid monomer; X is a neutralizing ion; the molecular weight of W is about 2,000 g/mol; the molar ratio of V:W is 1:0.09 to about 1:0.18; the molar ratio of V:Y is 1:0.26 to about 1:0.53; the molar ratio of V:Z is 1:0.09 to about 1:0.49; and the molar ratio of V:Z2 is 1:0.05 to about 1:0.35. In another alternative, the cationic polyurethane in the provided methods is a salt of the formula: [W, V, Y, Z, and Z2]X−, wherein W is the product formed from polycarbonate polyol monomer; V is the product formed from polyisocyanate monomer; Y is the product formed from C1-8alkyldiol monomer; Z is the product formed from C1-8aminoalkyldiol monomer; Z2 is the product formed from hydroxylated alkyl acid monomer; X is a neutralizing ion; and the molecular weight of W is about 3,000 g/mol; the molar ratio of V:W is 1:0.05 to about 1:0.13; the molar ratio of V:Y is 1:0.3 to about 1:0.56; the molar ratio of V:Z is 1:0.09 to about 1:0.5; and the molar ratio of V:Z2 is 1:0.05 to about 1:0.35.
In yet another alternative, V is the product formed from isophorone diisocyanate monomer; Y is the product formed from 1,4-butanediol monomer; and Z is the product formed from 3-(dimethylamino)-1,2-propanediol monomer. In yet another alternative, the cationic polyurethane in the provided methods is a salt of the formula:
wherein n is 6 to 21 and m is 19 to 31.
In some aspects, the cationic polyurethane in the provided methods is selected from PU-363, PU-399, PU-400, PU-377, PU-404, PU-378, PU-383, PU-398, PU-401, PU-402, PU-403, PU-385, PU-376, PU-408, PU-409, PU-396, PU-413, PU-414, PU-362, and PU-372. In another aspect, the cationic polyurethane in the provided methods is selected from PU-362, PU-376, PU-377, PU-378, and PU-404. In yet another aspect, the cationic polyurethane in the provided methods is selected from PU-363, PU-377, and PU-378.
In some aspects, the cationic polyurethane in the provided methods is dispersed in water.
In some aspects, the cationic polyurethane in the provided methods is in the form of a particle.
In some aspects, the cationic polyurethane in the provided methods comprises uniform particles having an average particle diameter of about 20 to about 80 nm.
In some aspects, the cationic polyurethane in the provided methods comprises bimodal or multimodal particles having an average particle diameter of about 100 to about 300 nm.
In some aspects, the cationic polyurethane in the provided methods is present in an amount of 25% to 35% based on the total weight of the composition.
In some aspects, the compositions described in the provided methods further comprise a neutralizer. The neutralizer may be e.g., an acid neutralizer such as lactic acid. In some aspects, the neutralizer:C1-8aminoalkyldiol monomer ratio is from about 0.8 to about 1.2.
In some aspects, the compositions described in the provided methods further comprise an oil. Oils can be selected from mineral, animal, plant or synthetic oils. In one aspect, the oil is linoleic acid or a mixture of fatty acids. Examples include, but are not limited to fragrance oils, emollients, monoterpenoids, fatty alcohols, fatty acids, fatty esters, fatty ethers, fluorinated small molecules (e.g., perfluoromethylcyclopentane, perfluoroperhydrophenanthrene, perfluoro-1,3-dimethylcyclohexane, perfluoromethyldecalin, and perfluoroperhydrobenzyltetralin), and mixtures thereof. In another aspect, the oil is present in an amount ranging from about 0.2 to about 1.65% based on the total weight of the composition. In another aspect, the oil is present in an amount of about 0.2 to about 0.25% based on the total weight of the composition.
In one aspect of the disclosed methods, the composition is applied prior to, during, or after the hair has been dyed. In another aspect, the composition is applied prior to or after the hair has been dyed. In yet another aspect, the composition is applied after the hair has been dyed.
In one aspect of the disclosed methods, the disclosed compositions are applied to the hair with water.
In one aspect of the disclosed methods, the disclosed compositions, when applied to the hair, change the texture and appearance.
In one aspect of the disclosed methods, the disclosed compositions, when applied to the hair, also improve hold, i.e. hair that is formed into a given curl or style retains that curl or style over time.
In one aspect of the disclosed methods, the disclosed compositions, when applied to the hair, also provide sufficient stylability i.e., the composition applied to hair supplies sufficient rigidity and flexibility to form and maintain a style.
In one aspect of the disclosed methods, the disclosed compositions, when applied to the hair, also minimize flyaways i.e., there are minimal individual hair fibers that do not conform to the given curl or style.
In one aspect of the disclosed methods, the disclosed compositions, when applied to the hair, also preserve curl shape i.e., hair that is formed into a given curl retains that curl over time.
In one aspect of the disclosed methods, the disclosed compositions, when applied to the hair, also provide natural curl enhancement i.e., hair that naturally tends to curl displays a more defined and less diffuse curl pattern.
The compositions in the disclosed methods may further comprise an antioxidant. Antioxidants that may be suitable include, but are not limited to, acai oil, alpha lipoic acid, green and white tea, retinol, vitamin C, Vitamin E, butylated hydroxytoluene, butylated hydroxyanisole, coenzyme Q10 (Co Q-10), isoflavones, polyphenols, curcumin, turmeric, pomegranate, rosemary, glutathione, selenium, and zinc.
In an exemplary aspect, an effective amount of a composition described herein may be sprayed or applied onto dry or damp hair before, during, and/or after the hair is dyed As used herein “effective amount” means an amount sufficient to provide color protection.
Also provided herein is a method for determining the color retention properties of a cosmetic composition, the method comprising the step of performing dialysis on a solution comprising the cosmetic composition and at least one color dye; and quantitatively assessing color loss over a period of time. In one aspect, “quantitatively assessing color loss over a period of time” means assessing the total color loss ΔE or total chroma loss ΔC according to formula described in Example 4, i.e.,
ΔE=√{square root over ((Lx−L0)2+(ax−a0)2+(bx−b0)2)} or
ΔC=√{square root over (((ax−a0)2+(bx−b0)2)}
In one aspect, the step of performing dialysis comprises placing a hair dye of interest into dialysis tubing and then placing the dialysis tubing comprising the hair dye in a reservoir bath comprising the composition of interest.
Cationic waterborne polyurethanes were synthesized primarily using polycarbonate diol, 1,4-butanediol (BD), isophorone diisocyanate (IPDI), and 3-(dimethylamino)-1,2-propanediol (DMAPD); selectively, the nonionic chain extenders Tegomer D3403 (ethoxylated polyether-1,3-diol) and 2,2-bis(hydroxymethyl)butyric acid (DMBA) were incorporated in cationic waterborne polyurethanes respectively to achieve desired physical properties. A mild acid, lactic acid, was used as a neutralizer. For each monomer, the molar ratio to NCO is listed in Table 1. Moreover, a beneficial oil could be also incorporated into cationic waterborne polyurethanes to provide improved sensory attributes.
Overall, inventive cationic waterborne polyurethanes possessed optimal physical properties as defined herein: (1) Young's modulus>150 MPa, (2) Elongation at break between 15% and 300%, and (3) Water uptake (a) below 10% for WBPUs without additive (b) below 8% for WBPUs with additive. See Table 2.
Particle size and distribution of cationic waterborne polyurethanes can be divided by two types. Depending on chemical compositions, one type of cationic waterborne polyurethanes showed uniform particle size distribution and average particle diameter was in the range of about 20 to about 80 nm. The other type of cationic waterborne polyurethane showed large particle size and bimodal/multimodal particle size distribution as indicated by average particle sizes in the range of 100 to approximately 300 nm and large standard deviation of particle size. See Table 3.
The Young's modulus is a measure of the ability of a material to withstand changes in length when under uniaxial tension or compression. A higher Young's modulus typically indicates that the material is more rigid. The elongation at break, also known as fracture strain, is the ratio between changed length and initial length after breakage of the test specimen. A higher elongation at break expresses the capability of a material to resist fracture.
A comparison of Young's modulus and the elongation at break for the some of the polyurethanes disclosed herein was made to several commercially available polyurethane products. The Young's modulus and the elongation at break can be determined by a protocol defined to measure mechanical properties is developed in compliance with ASTM D638, ASTM D412, test guidelines. In particular, the following protocol can be used to determine the Young's modulus and elongation at break (or ultimate elongation) of dry film of polyurethanes. Testing requires approximately 10-20 min per sample to complete.
Materials:
Sample Preparation:
Sample Testing
1. Balance the load registering on the universal testing machine so that it reads 0 Newtons.
2. Use calipers to set a distance of 20 mm between the top and bottom extension grip geometries.
3. Mount a sample in the extension grips and secure tightly, ensuring that the scotch tape is not visible, and that the sample is as close to vertical as possible in both vertical planes.
4. Stretch the sample slightly, by separating the geometries until a force of 2-5 N is registered.
5. Begin a tensile testing run on the universal testing machine at a speed of 100 mm/minute, stopping the test upon sample fracture.
6. Elongation at break is calculated at the elongation at which the material fractures.
7. Young's modulus is calculated as the modulus during the initial, elastic portion of deformation by calculating the slope of a linear fit to that region with an R value>0.99.
a) low modulus and high elongation (Avalure UR 450 (PPG-17/IPDI/DMPA Copolymer), C1004 (Polyurethane-35), Polyderm PE/PA ED (Polyurethane-58), Polyderm PE/PA (Polyurethane-18)), which leads to inferior curl hold (e.g., hold is temporary, transient, or short-lived) or
b) high modulus and low elongation (DynamX (Polyurethane-14 and AMP-Acrylates copolymer), DynamX/H2O (Polyurethane-14 and AMP-Acrylates copolymer/water), Luviset PUR (Polyurethane-1)), which leads to a brittle material with low performance (e.g., resin is brittle or fractures) after manipulation.
The moisture uptake properties, under highly humid environment, of WBPU dry films have been linked to their long lasting hold performance. As such, it is important to be able to reproducibly and accurately evaluate such moisture uptake properties to enable predictive in vitro and in vivo evaluation of WBPU dry films. The following protocol can be used to determine moisture uptake ability of WBPU dry films under high humid environment. Test requires about 2-3 days per sample set to complete
Materials
Sample Testing
Sample Analysis
Calculate % moisture uptake using the following equation:
The colorimetry data for hair dye lost in in the presence of the polyurethanes disclosed herein was gathered and compared to hair dye lost in several commercially available color protectant resins. Color loss is determined by evaluating changes in the L*, a*, and b* values for each sample, which are numerical values that can be assigned indicate a sample's color on a white/black scale (L*), a red/green scale (a*), and a blue/yellow scale (b*). The protocol used to determine color loss was gathered using a colorimeter according to the following general procedure. Testing requires approximately 5 min per sample to complete.
The disclosed cationic polyurethanes were found to minimize dye loss in various polymer systems and therefore contain properties sufficient to delay or prevent dye loss from color treated hair. Here, a novel method for the evaluation of color retention, dialysis, was used to model the in vitro and in vivo color protection results obtained for the cationic WBPU. In each dialysis experiment, hair dye of interest (15 g) was suspended in dialysis tubing with a pore size of 0.5-1 kDa to mimic the pore size of biological materials such as hair keratin. The dialysis tubing was then submerged in a large reservoir bath (300 g) containing a resin of interest, such as the cationic WBPU or commercial color protectant resins. In one experiment, dialysis tubing samples was prepared containing red hair dye and then submerged in either 0.8 wt % cationic WBPU or 0.8 wt % Merquat™ 2003 PR and Merquat™ 100. Samples of the reservoir taken at different timepoints show visually that less hair dye is lost from the dialysis tubing in the presence of the cationic WBPU, compared to the Merquat mixture (
During a controlled in vitro study mimicking typical dye washing, tresses dyed with red hair dye were treated with solutions containing either a cationic polyurethane or N-DurHance™ A-1000. 1.5 g tresses that were previously dyed with a red hair dye were coated with 0.5 g of 5% cationic WBPU or N-DurHance™ A-1000 solutions and left to sit for 30 seconds, and then dipped 10 times in a jar of 50 mL DI water. The cationic WBPU treatment resulted in far less dye loss (left), compared to the common color protecting polymer N-DurHance™ A-1000 (right). See
The contents of all references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated herein in their entireties by reference. Unless otherwise defined, all technical and scientific terms used herein are accorded the meaning commonly known to one with ordinary skill in the art.
This application claims priority to U.S. Provisional Application No. 62/655,275, filed Apr. 10, 2018 and U.S. Provisional Application No. 62/557,825, filed Sep. 13, 2017, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3104424 | Immel | Sep 1963 | A |
3262686 | Kraus et al. | Jul 1966 | A |
3803063 | Krentz, Jr. | Apr 1974 | A |
4071614 | Grimm, III | Jan 1978 | A |
4455146 | Noda et al. | Jun 1984 | A |
4950542 | Barker | Aug 1990 | A |
5110852 | Gogolewski et al. | May 1992 | A |
5281654 | Eisenhart et al. | Jan 1994 | A |
5290543 | Ounanian et al. | Mar 1994 | A |
5335373 | Dresdner, Jr. et al. | Aug 1994 | A |
5357636 | Dresdner, Jr. et al. | Oct 1994 | A |
5534265 | Fowler et al. | Jul 1996 | A |
5534348 | Miller et al. | Jul 1996 | A |
5540853 | Trinh et al. | Jul 1996 | A |
5626840 | Thomaides et al. | May 1997 | A |
5637291 | Bara et al. | Jun 1997 | A |
5643581 | Mougin et al. | Jul 1997 | A |
5720961 | Fowler et al. | Feb 1998 | A |
5733572 | Unger et al. | Mar 1998 | A |
5807540 | Junino et al. | Sep 1998 | A |
5833967 | Ramin | Nov 1998 | A |
5846551 | DaCunha et al. | Dec 1998 | A |
5849310 | Trinh et al. | Dec 1998 | A |
5891463 | Bello et al. | Apr 1999 | A |
5900457 | Duan et al. | May 1999 | A |
5912299 | Tomko et al. | Jun 1999 | A |
5914117 | Lavaud | Jun 1999 | A |
5932194 | Plessix et al. | Aug 1999 | A |
5932200 | Reich et al. | Aug 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
6007793 | Bhatt et al. | Dec 1999 | A |
6084051 | Blum et al. | Jul 2000 | A |
6086903 | Trinh et al. | Jul 2000 | A |
6106813 | Mondet et al. | Aug 2000 | A |
6126930 | Dubois et al. | Oct 2000 | A |
6130309 | Reich et al. | Oct 2000 | A |
6132704 | Bhatt et al. | Oct 2000 | A |
6153179 | Blankenburg et al. | Nov 2000 | A |
6156325 | Farer et al. | Dec 2000 | A |
6221344 | Ramin et al. | Apr 2001 | B1 |
6238651 | Bara | May 2001 | B1 |
6254876 | de la Poterie et al. | Jul 2001 | B1 |
6277386 | Kim et al. | Aug 2001 | B1 |
6277401 | Bello et al. | Aug 2001 | B1 |
6291580 | Kukkala et al. | Sep 2001 | B1 |
6298558 | Tseng et al. | Oct 2001 | B1 |
6319959 | Mougin et al. | Nov 2001 | B1 |
6326013 | Lemann et al. | Dec 2001 | B1 |
6346234 | Rollat et al. | Feb 2002 | B1 |
6361782 | Chevalier et al. | Mar 2002 | B1 |
6365697 | Kim et al. | Apr 2002 | B1 |
6372876 | Kim et al. | Apr 2002 | B1 |
6403070 | Pataut et al. | Jun 2002 | B1 |
6403107 | Lemann | Jun 2002 | B1 |
6403542 | Maurin et al. | Jun 2002 | B1 |
6409998 | Candau et al. | Jun 2002 | B1 |
6433073 | Kantner et al. | Aug 2002 | B1 |
6465534 | Fukuzawa et al. | Oct 2002 | B2 |
6469227 | Cooke et al. | Oct 2002 | B1 |
6485950 | Kumar et al. | Nov 2002 | B1 |
6517821 | Rollat et al. | Feb 2003 | B1 |
6520186 | Rollat et al. | Feb 2003 | B2 |
6524564 | Kim et al. | Feb 2003 | B1 |
6524597 | Kashimoto | Feb 2003 | B2 |
6531118 | Gonzalez et al. | Mar 2003 | B1 |
6555096 | Carrion et al. | Apr 2003 | B2 |
6576024 | Lang et al. | Jun 2003 | B1 |
6576702 | Anderle et al. | Jun 2003 | B2 |
6579517 | Kim et al. | Jun 2003 | B1 |
6592881 | Fukuda et al. | Jul 2003 | B1 |
6613314 | Rollat et al. | Sep 2003 | B1 |
6635262 | Jourdan et al. | Oct 2003 | B2 |
6641804 | Ohta et al. | Nov 2003 | B1 |
6682748 | De La Poterie et al. | Jan 2004 | B1 |
6689345 | Jager Lezer | Feb 2004 | B2 |
6692729 | Asaoka et al. | Feb 2004 | B1 |
6719959 | Gonzalez et al. | Apr 2004 | B1 |
6730289 | Khoshdel | May 2004 | B2 |
6750291 | Kim et al. | Jun 2004 | B2 |
6800276 | Kim et al. | Oct 2004 | B2 |
6830758 | Nichols et al. | Dec 2004 | B2 |
6884853 | Asaoka et al. | Apr 2005 | B1 |
6897281 | Lubnin et al. | May 2005 | B2 |
6927254 | Melchiors et al. | Aug 2005 | B2 |
7019061 | Meffert et al. | Mar 2006 | B2 |
7098178 | Gerke et al. | Aug 2006 | B2 |
7101954 | Zofchak et al. | Sep 2006 | B2 |
7160553 | Gibbins et al. | Jan 2007 | B2 |
7326256 | Cottard et al. | Feb 2008 | B2 |
7348299 | Keenan et al. | Mar 2008 | B2 |
7445770 | Berezkin et al. | Nov 2008 | B2 |
7452525 | Berezkin et al. | Nov 2008 | B1 |
7481996 | Ishii et al. | Jan 2009 | B2 |
7659233 | Hurley et al. | Feb 2010 | B2 |
7700082 | Mallo et al. | Apr 2010 | B2 |
7740832 | Rollat-Corvol et al. | Jun 2010 | B1 |
7744911 | Pechko et al. | Jun 2010 | B2 |
RE41615 | Kim et al. | Aug 2010 | E |
7829099 | Woeller et al. | Nov 2010 | B2 |
7907346 | Swarup et al. | Mar 2011 | B2 |
7914775 | Cottard et al. | Mar 2011 | B2 |
7959903 | Candau et al. | Jun 2011 | B2 |
7972589 | Leighton et al. | Jul 2011 | B2 |
7998465 | De La Poterie et al. | Aug 2011 | B2 |
8067355 | Smets et al. | Nov 2011 | B2 |
8258093 | Van Dyke | Sep 2012 | B2 |
8343523 | Toreki et al. | Jan 2013 | B2 |
8449871 | Mougin et al. | May 2013 | B2 |
8497338 | Bai et al. | Jul 2013 | B2 |
8623388 | Rajaiah et al. | Jan 2014 | B2 |
8629213 | Hidalgo et al. | Jan 2014 | B2 |
8679050 | Nakamura | Mar 2014 | B2 |
8679465 | Malnou et al. | Mar 2014 | B2 |
8734772 | Zhou et al. | May 2014 | B1 |
8741333 | Zhang et al. | Jun 2014 | B2 |
8784854 | Choi et al. | Jul 2014 | B2 |
8871817 | Turk et al. | Oct 2014 | B2 |
8882902 | Suzuki et al. | Nov 2014 | B2 |
8895040 | Vondruska et al. | Nov 2014 | B2 |
8956160 | Willison et al. | Feb 2015 | B2 |
8956162 | De Vreese et al. | Feb 2015 | B2 |
9016221 | Brennan et al. | Apr 2015 | B2 |
RE45538 | Smets et al. | Jun 2015 | E |
9079152 | Markus et al. | Jul 2015 | B2 |
9101143 | Markus et al. | Aug 2015 | B2 |
9102783 | Yagi et al. | Aug 2015 | B2 |
9175125 | Turk et al. | Nov 2015 | B2 |
9295632 | Benn et al. | Mar 2016 | B1 |
9340650 | Wagner et al. | May 2016 | B2 |
9393218 | Zurdo Schroeder et al. | Jul 2016 | B2 |
20010031280 | Ferrari et al. | Oct 2001 | A1 |
20020034480 | Grimm et al. | Mar 2002 | A1 |
20020034486 | Midha et al. | Mar 2002 | A1 |
20020102222 | Carrion et al. | Aug 2002 | A1 |
20020107314 | Pinzon et al. | Aug 2002 | A1 |
20020114773 | Kanji et al. | Aug 2002 | A1 |
20020155962 | Cincotta et al. | Oct 2002 | A1 |
20020164297 | Ferrari et al. | Nov 2002 | A1 |
20020192273 | Buseman et al. | Dec 2002 | A1 |
20030026815 | Scott et al. | Feb 2003 | A1 |
20030064086 | Carrion et al. | Apr 2003 | A1 |
20030082126 | Pinzon et al. | May 2003 | A9 |
20030086886 | Midha | May 2003 | A1 |
20030086896 | Midha et al. | May 2003 | A1 |
20030099694 | Cevc et al. | May 2003 | A1 |
20030125427 | Pinzon et al. | Jul 2003 | A9 |
20030185780 | Ferrari et al. | Oct 2003 | A1 |
20030190345 | Cordes et al. | Oct 2003 | A1 |
20030191154 | Kalafsky et al. | Oct 2003 | A1 |
20030198659 | Hoffmann et al. | Oct 2003 | A1 |
20030203991 | Schottman et al. | Oct 2003 | A1 |
20040001798 | Perron et al. | Jan 2004 | A1 |
20040057914 | Bonda et al. | Mar 2004 | A1 |
20040071757 | Rolf | Apr 2004 | A1 |
20040086482 | Zofchak et al. | May 2004 | A1 |
20040120915 | Yang et al. | Jun 2004 | A1 |
20040131573 | Tang | Jul 2004 | A1 |
20040137028 | de la Poterie | Jul 2004 | A1 |
20040156804 | Poterie et al. | Aug 2004 | A1 |
20040166076 | Ferrari et al. | Aug 2004 | A1 |
20040166133 | Cavazzuti et al. | Aug 2004 | A1 |
20040176487 | Svedberg et al. | Sep 2004 | A1 |
20040186259 | Brehm et al. | Sep 2004 | A1 |
20040197286 | Robert et al. | Oct 2004 | A1 |
20040223987 | Ferrari | Nov 2004 | A1 |
20040228886 | Ding et al. | Nov 2004 | A1 |
20040247549 | Lu et al. | Dec 2004 | A1 |
20050008667 | Liechty et al. | Jan 2005 | A1 |
20050014674 | Liechty et al. | Jan 2005 | A1 |
20050043209 | Schmiedel et al. | Feb 2005 | A1 |
20050089540 | Uchiyama et al. | Apr 2005 | A1 |
20050118126 | Rollat et al. | Jun 2005 | A1 |
20050148753 | Nguyen-Kim et al. | Jul 2005 | A1 |
20050163741 | Zech | Jul 2005 | A1 |
20050169873 | Rollat et al. | Aug 2005 | A1 |
20050169874 | Zofchak et al. | Aug 2005 | A1 |
20050220740 | Dumousseaux | Oct 2005 | A1 |
20050220741 | Dumousseaux | Oct 2005 | A1 |
20050249691 | Monks et al. | Nov 2005 | A1 |
20050276831 | Dihora et al. | Dec 2005 | A1 |
20050287100 | Lebre | Dec 2005 | A1 |
20050287103 | Filippi et al. | Dec 2005 | A1 |
20050287182 | Monks et al. | Dec 2005 | A1 |
20050287183 | Lebre | Dec 2005 | A1 |
20060045890 | Gonzalez et al. | Mar 2006 | A1 |
20060045893 | Yu et al. | Mar 2006 | A1 |
20060051311 | Walter et al. | Mar 2006 | A1 |
20060073106 | Berg-Schultz et al. | Apr 2006 | A1 |
20060078519 | Lion et al. | Apr 2006 | A1 |
20060083762 | Brun et al. | Apr 2006 | A1 |
20060099550 | Faasse et al. | May 2006 | A1 |
20060120983 | Blin et al. | Jun 2006 | A1 |
20060171984 | Cromack et al. | Aug 2006 | A1 |
20060193789 | Tamarkin et al. | Aug 2006 | A1 |
20060216250 | Schultz et al. | Sep 2006 | A1 |
20060233728 | Sagawa et al. | Oct 2006 | A1 |
20060281650 | Keenan et al. | Dec 2006 | A1 |
20060287219 | Dykstra et al. | Dec 2006 | A1 |
20070032605 | Harashina | Feb 2007 | A1 |
20070105977 | Gabriel et al. | May 2007 | A1 |
20070167565 | Rische et al. | Jul 2007 | A1 |
20070183992 | Dumousseaux et al. | Aug 2007 | A1 |
20070183997 | Lebre et al. | Aug 2007 | A9 |
20070189980 | Zhang et al. | Aug 2007 | A1 |
20070207222 | Yu et al. | Sep 2007 | A1 |
20070251026 | Lalleman | Nov 2007 | A1 |
20080044373 | Ilekti et al. | Feb 2008 | A1 |
20080044445 | Rubin | Feb 2008 | A1 |
20080045985 | Gurtner et al. | Feb 2008 | A1 |
20080138368 | Lezer | Jun 2008 | A1 |
20080175875 | Sunkara | Jul 2008 | A1 |
20080254074 | Dussaud et al. | Oct 2008 | A1 |
20090049623 | Brown et al. | Feb 2009 | A1 |
20090056734 | Bacon | Mar 2009 | A1 |
20090061004 | Birkel et al. | Mar 2009 | A1 |
20090105195 | O'Brien | Apr 2009 | A1 |
20090112141 | Derr | Apr 2009 | A1 |
20090175928 | Maier et al. | Jul 2009 | A1 |
20090196842 | Zech et al. | Aug 2009 | A1 |
20090257960 | Kim et al. | Oct 2009 | A1 |
20090263338 | Rolland et al. | Oct 2009 | A1 |
20090285866 | Afriat et al. | Nov 2009 | A1 |
20100003198 | Stolmeier et al. | Jan 2010 | A1 |
20100233146 | McDaniel | Sep 2010 | A1 |
20100260687 | Yu et al. | Oct 2010 | A1 |
20100261629 | Smets et al. | Oct 2010 | A1 |
20100297036 | Feuillette | Nov 2010 | A1 |
20100325812 | Panandiker et al. | Dec 2010 | A1 |
20100325813 | Dykstra et al. | Dec 2010 | A1 |
20110010817 | Theberge et al. | Jan 2011 | A1 |
20110027211 | Viala et al. | Feb 2011 | A1 |
20110046286 | Lubnin et al. | Feb 2011 | A1 |
20110117042 | Viala et al. | May 2011 | A1 |
20110200927 | Jung et al. | Aug 2011 | A1 |
20110229430 | Hawkins et al. | Sep 2011 | A1 |
20110230474 | Grigorian et al. | Sep 2011 | A1 |
20110256311 | Mattos, Jr. | Oct 2011 | A1 |
20110272320 | Alwattari et al. | Nov 2011 | A1 |
20110274633 | Vu et al. | Nov 2011 | A1 |
20120255574 | Flohr et al. | Oct 2012 | A1 |
20130084256 | Li et al. | Apr 2013 | A1 |
20130161349 | Pfeiffenberger | Jun 2013 | A1 |
20130196849 | Combs et al. | Aug 2013 | A1 |
20130239344 | Stolarz, Jr. et al. | Sep 2013 | A1 |
20130239874 | Smith et al. | Sep 2013 | A1 |
20130261255 | Deyrail et al. | Oct 2013 | A1 |
20140010776 | Viala et al. | Jan 2014 | A1 |
20140044657 | Kelly et al. | Feb 2014 | A1 |
20140066496 | Gunari et al. | Mar 2014 | A1 |
20140086864 | Ishimori et al. | Mar 2014 | A1 |
20140105846 | Viala et al. | Apr 2014 | A1 |
20140142191 | De La Zerda et al. | May 2014 | A1 |
20140147396 | Sertchook et al. | May 2014 | A1 |
20140170327 | Dombrowski et al. | Jun 2014 | A1 |
20140219927 | Belluscio et al. | Aug 2014 | A1 |
20140248270 | Yu et al. | Sep 2014 | A1 |
20140248340 | Schwarzentruber et al. | Sep 2014 | A1 |
20140350269 | Eiji Borges Sato | Nov 2014 | A1 |
20150004117 | Tan et al. | Jan 2015 | A1 |
20150007849 | Cajan et al. | Jan 2015 | A1 |
20150071978 | Chang | Mar 2015 | A1 |
20150118331 | Boam et al. | Apr 2015 | A1 |
20150119497 | Matsui et al. | Apr 2015 | A1 |
20150190450 | Chang | Jul 2015 | A1 |
20150238406 | Pohlmann et al. | Aug 2015 | A1 |
20150342845 | Hwang et al. | Dec 2015 | A1 |
20150344622 | Mukerjee et al. | Dec 2015 | A1 |
20160001099 | Castro et al. | Jan 2016 | A1 |
20160058678 | Smets et al. | Mar 2016 | A1 |
20160074311 | Massey-Brooker et al. | Mar 2016 | A1 |
20160143836 | Hayes et al. | May 2016 | A1 |
20160175233 | Benn | Jun 2016 | A1 |
20160175238 | Shin et al. | Jun 2016 | A1 |
20160184195 | Tan | Jun 2016 | A1 |
20160220475 | Scherner et al. | Aug 2016 | A1 |
20170258700 | Kang et al. | Sep 2017 | A1 |
20180000699 | Trahan | Jan 2018 | A1 |
20190076347 | Kang et al. | Mar 2019 | A1 |
20190151221 | Kang et al. | May 2019 | A1 |
20190359783 | Demko | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
102013022835 | Aug 2015 | BR |
101130082 | Feb 2008 | CN |
102895164 | Jan 2013 | CN |
104188877 | Dec 2014 | CN |
105213260 | Jan 2016 | CN |
105561841 | May 2016 | CN |
727981 | Aug 1996 | EP |
789550 | Aug 1997 | EP |
923927 | Jun 1999 | EP |
1058560 | Dec 2000 | EP |
1082953 | Mar 2001 | EP |
1090632 | Apr 2001 | EP |
1090633 | Apr 2001 | EP |
1092419 | Apr 2001 | EP |
1155676 | Nov 2001 | EP |
1161937 | Dec 2001 | EP |
1216690 | Jun 2002 | EP |
1218430 | Jul 2002 | EP |
1289363 | Mar 2003 | EP |
1417886 | May 2004 | EP |
1481661 | Dec 2004 | EP |
1491179 | Dec 2004 | EP |
1579841 | Sep 2005 | EP |
1579849 | Sep 2005 | EP |
1604634 | Dec 2005 | EP |
1707182 | Oct 2006 | EP |
1707183 | Oct 2006 | EP |
1773906 | Apr 2007 | EP |
1800671 | Jun 2007 | EP |
2209472 | Jul 2010 | EP |
2271304 | Jan 2011 | EP |
2391424 | Dec 2011 | EP |
2591772 | May 2013 | EP |
2611466 | Jul 2013 | EP |
2726067 | May 2014 | EP |
2858630 | Apr 2015 | EP |
2859794 | Apr 2015 | EP |
2867298 | May 2015 | EP |
2925296 | Oct 2015 | EP |
2995217 | Mar 2016 | EP |
3020454 | May 2016 | EP |
2801209 | May 2001 | FR |
2835529 | Aug 2003 | FR |
2892931 | May 2007 | FR |
2902655 | Dec 2007 | FR |
2940093 | Jun 2010 | FR |
2957347 | Sep 2011 | FR |
2967062 | May 2012 | FR |
H06362 | Jan 1994 | JP |
H1080973 | Mar 1998 | JP |
2004-256694 | Sep 2004 | JP |
2006-290845 | Oct 2006 | JP |
2010-132568 | Jun 2010 | JP |
2011-173851 | Sep 2011 | JP |
2016-094362 | May 2016 | JP |
20080064230 | Jul 2008 | KR |
20090058294 | Jun 2009 | KR |
20090081582 | Jul 2009 | KR |
20110062277 | Jun 2011 | KR |
20140078356 | Jun 2014 | KR |
20140093349 | Jul 2014 | KR |
1989007959 | Sep 1989 | WO |
1991001970 | Feb 1991 | WO |
199413354 | Jun 1994 | WO |
199813025 | Apr 1998 | WO |
199826751 | Jun 1998 | WO |
199826756 | Jun 1998 | WO |
199912519 | Mar 1999 | WO |
199955288 | Nov 1999 | WO |
199955290 | Nov 1999 | WO |
199955291 | Nov 1999 | WO |
199955292 | Nov 1999 | WO |
199956708 | Nov 1999 | WO |
200014091 | Mar 2000 | WO |
2000016752 | Mar 2000 | WO |
2000018367 | Apr 2000 | WO |
2000027350 | May 2000 | WO |
200040628 | Jul 2000 | WO |
2001003652 | Jan 2001 | WO |
2001024768 | Apr 2001 | WO |
2001068037 | Sep 2001 | WO |
2001078691 | Oct 2001 | WO |
2001087065 | Nov 2001 | WO |
2001094438 | Dec 2001 | WO |
2002007699 | Jan 2002 | WO |
2002039961 | May 2002 | WO |
2002039964 | May 2002 | WO |
2002043490 | Jun 2002 | WO |
2002043491 | Jun 2002 | WO |
2002045663 | Jun 2002 | WO |
2002047620 | Jun 2002 | WO |
2002047624 | Jun 2002 | WO |
2002047626 | Jun 2002 | WO |
2002047628 | Jun 2002 | WO |
2002047657 | Jun 2002 | WO |
2002047658 | Jun 2002 | WO |
2002054997 | Jul 2002 | WO |
2002055034 | Jul 2002 | WO |
2002072045 | Sep 2002 | WO |
2003028678 | Apr 2003 | WO |
2003094870 | Nov 2003 | WO |
2004110401 | Dec 2004 | WO |
2005014777 | Feb 2005 | WO |
2005017134 | Feb 2005 | WO |
2005092963 | Oct 2005 | WO |
2006015718 | Feb 2006 | WO |
2006062740 | Jun 2006 | WO |
2006127883 | Nov 2006 | WO |
2006131403 | Dec 2006 | WO |
2007057059 | May 2007 | WO |
2007070643 | Jun 2007 | WO |
2007071886 | Jun 2007 | WO |
2007077029 | Jul 2007 | WO |
2007145395 | Dec 2007 | WO |
2008006677 | Jan 2008 | WO |
2008006687 | Jan 2008 | WO |
2008024408 | Feb 2008 | WO |
2008125406 | Oct 2008 | WO |
2008133982 | Nov 2008 | WO |
2008148809 | Dec 2008 | WO |
2009014347 | Jan 2009 | WO |
2009053594 | Apr 2009 | WO |
2010003138 | Jan 2010 | WO |
2010006442 | Jan 2010 | WO |
2010037402 | Apr 2010 | WO |
2010076483 | Jul 2010 | WO |
2010079468 | Jul 2010 | WO |
2010086754 | Aug 2010 | WO |
2010129299 | Nov 2010 | WO |
2011016140 | Feb 2011 | WO |
2011016531 | Feb 2011 | WO |
2011075556 | Jun 2011 | WO |
2011089709 | Jul 2011 | WO |
2011140330 | Nov 2011 | WO |
2012037445 | Mar 2012 | WO |
2012063947 | May 2012 | WO |
2012087510 | Jun 2012 | WO |
2012117013 | Sep 2012 | WO |
2012121704 | Sep 2012 | WO |
2012168102 | Dec 2012 | WO |
2013068478 | May 2013 | WO |
2013071079 | May 2013 | WO |
2013149323 | Oct 2013 | WO |
2014001574 | Jan 2014 | WO |
2014001985 | Jan 2014 | WO |
2014014139 | Jan 2014 | WO |
2014105676 | Jul 2014 | WO |
2014176515 | Oct 2014 | WO |
2015020060 | Feb 2015 | WO |
2015028417 | Mar 2015 | WO |
2015028418 | Mar 2015 | WO |
2015028421 | Mar 2015 | WO |
2015028424 | Mar 2015 | WO |
2015051139 | Apr 2015 | WO |
2015188335 | Dec 2015 | WO |
2016016315 | Feb 2016 | WO |
2016058958 | Apr 2016 | WO |
2016069396 | May 2016 | WO |
2016074683 | May 2016 | WO |
2016087948 | Jun 2016 | WO |
2016096928 | Jun 2016 | WO |
2016100885 | Jun 2016 | WO |
2016115257 | Jul 2016 | WO |
2016138249 | Sep 2016 | WO |
2017155906 | Sep 2017 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US2018/050538, dated Jan. 7, 2019, 17 pages. |
Invitation to Pay Additional Fees for Application No. PCT/US2018/050546, dated Jan. 7, 2019, 15 pages. |
Srivastava et al., Indian Application No. 148/DEL/2010. Bioreactor and Uses Thereof. Filed Jul. 29, 2011. 20 pages. |
Teixeira et al., A case study of product engineering: Performance of microencapsulated perfumes on textile applications. AIChE Journal. Jun. 2011;58(6):1939-1950. |
International Search Report and Written Opinion for Application No. PCT/US2017/021025, dated May 23, 2017. |
Adina, Natpure Hollowbead. Adina Cosmetic Ingredients Ltd., retrieved online at: http://www.cosmeticingredients.co.uk/ingredient/natpure-hollowbead. 2 pages, (2015). |
AkzoNobel, Product Specification for Expancel Microspheres. www.expancel.com, 2 pages, (2011). |
Araujo et al., Techniques for reducing residual monomer content in polymers: a review. Polymer Engineering and Science. 64 pages, Jul. 1, 2002. |
Lochhead et al., Polymers in Cosmetics: Recent Advances. From film-formers to rheology modifiers, polymers serve various functions. Retrieved online at: https://www.happi.com/contents/view_features/2005-11-15/polymers-in-cosmetics-recent-advances. 12 pages, Nov. 15, 2005. |
Number | Date | Country | |
---|---|---|---|
20190076348 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62655275 | Apr 2018 | US | |
62557825 | Sep 2017 | US |