The present invention provides an improved method and apparatus for image processing. In particular the invention provides an improved method of color segmentation, for example face skin segmentation.
An improved method of face skin segmentation of a digital image is provided. A method of skin segmentation of a digital image is provided which is operable in an image acquisition device. An image is acquired. A value indicative of a redness of a pixel of the image is compared with a face skin pixel redness criterion. The pixel is identified as a face skin pixel if the criterion is satisfied.
The redness criterion may be proportional to the saturation of the pixel. The image may be in RGB colour space, and the value may include the R value of the pixel. The criterion may include R>G+K and R>B+K, and K may be a constant approximately equal to 15, and K may comprise approximately x * (pixel saturation+y), where x is in the range of approximately 0.53 to 0.6; and y is in the range of approximately 5 to 6.5. The pixel saturation may be calculated as:
Sqrt(R2*0.27847−R*G*0.30610+G2*0.28503−R*B*0.25005+B2*0.25661−G*B*0.26317). The criterion may further comprise an alternate condition that an intensity of said region, I, is greater than 240.
The image may be in YCC colour space, and the value may include a Cr value of said pixel. The criterion may include Cr>148.8162−0.1626*Cb+0.4726*K and Cr>1.2639*Cb−33.7803+0.133*K, where K may be a constant approximately equal to 15. The criterion may include
Cr>148.8162−0.1626*Cb+0.2836*(pixel saturation+5) and Cr>1.2639*Cb−33.7803+0.4279*(pixel saturation+5), where pixel saturation is:
√{square root over (((Cr−128)2+(Cb−128)2))}{square root over (((Cr−128)2+(Cb−128)2))}
The criterion may include an alternate condition that an intensity of said region, Y, is greater than 240. The image may be partitioned into one or more regions of similar colors wherein said value indicative of a redness of a pixel may include an average pixel value for one of the regions.
The image may be partitioned into one or more regions of pixels having been identified as face skin pixels. The comparing may provide a real value. The method may include providing a contour map of a region comprising the real value. The contour map may be analyzed to locate one or more facial features within a region of face skin pixels. The image may be analyzed to determine one or more candidate face regions. Face detection may be performed on one or more regions of said image, each including a pixel having been identified as a face skin pixel and/or each including one of the regions of face skin pixels.
A computer program product and digital image processing device are further provided in accordance with the above methods.
Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
It is recognized herein that a primary difference exists between face skin regions and other skin regions in that face skin regions comprise a reddish skin tone. This information is utilized to create a uniquely advantageous color segmentation condition to identify face skin regions within an image.
In the case of preview images which are generated in the pre-capture mode 32 with the shutter button half-pressed, the display 100 can assist the user in composing the image, as well as be used to determine focusing and exposure. Temporary storage 82 is used to store one or more of the preview images and can be part of the image store 80 or a separate component. The preview image is usually generated by the image capture device 60.
For speed and memory efficiency reasons, preview images usually have a lower pixel resolution than the main image taken when the shutter button is fully depressed, and are generated by sub-sampling a raw captured image using software 124 which can be part of the general processor 120 or dedicated hardware or combination thereof.
A skin segmentation module 90 can be integral to the camera 20 or part of an external processing device 10 such as a desktop computer, a colour printer or a photo kiosk. In this embodiment, the skin segmentation module 90 receives the captured high resolution digital image from the store 80 and analyzes it to identify regions as face or non-face regions. The is performed according to the principles of the invention as described in the embodiments to follow and the results are made available for pre and/or post processing applications, such as face detection, or face tracking, or eye defect detection and/or correction algorithms. Furthermore, the identified face regions of the image may be either displayed on image display 100, saved on a persistent storage 112 which can be internal or a removable storage such as CF card, SD card or the like, or downloaded to another device via image output means 110 which can be tethered or wireless. The skin segmentation module 90 can be brought into operation either automatically each time an image is acquired, or upon user demand via input 30. Although illustrated as a separate item, where the module 90 is part of the camera it may be implemented by suitable software on the processor 120.
Referring to
An image is acquired, 200 from the store 80. In a first, second and third embodiment, a color segmentation condition is implemented as a Boolean function, which returns an indicator of whether or not the condition is satisfied. So for any input pixel, the color segmentation condition is applied to the pixel 210, and if the pixel satisfies the condition, the pixel is labeled as a face skin pixel 220, otherwise, the pixel is labeled as a non-face skin pixel 230. This function can be applied until all pixels have been labeled to produce a map of face and non-face skin pixels for the image.
Within the map, face skin regions can then be defined by linking pixels classified as comprising face skin. These regions can be bounded by rectangles which are then used to designate potential face regions.
In an alternative embodiment, the image may be partitioned initially into regions of similar colors to form a color map as disclosed in U.S. Pat. No. 6,661,907, incorporated by reference, or in any other suitable manner. In such an embodiment, the color segmentation condition is applied to a representative pixel color from each region to define the region as a face skin region or not.
In a first embodiment of the invention, where the image is in RGB color space, the color segmentation condition is represented as:
R>G+K and R>B+K
The corresponding color segmentation condition in YCC space is:
Cr>148.8162−0.1626*Cb+0.4726*K and
Cr>1.2639*Cb−33.7803+0.7133*K
In both RGB and YCC space, K is a constant and is approximately equal to 15.
In a second embodiment of the present invention, K is a function of saturation of a pixel or region and is defined as:
K=x*(pixel/region saturation+y)
where x is in the range of approximately 0.53 to 0.6; and
y is in the range of approximately 5 to 6.5
The difference between the red plane, R, and both the green, G and blue, B planes is directly proportional to the saturation level of the image. Thus the color segmentation condition in this embodiment varies dynamically with exposure.
In RGB space, the pixel/region saturation is the average of pixel saturation in a region and defined as:
Sqrt(R2*0.27847−R*G*0.30610+G2*0.28503−R*B*0.25005+B2*0.25661−G*B*0.26317)
In YCC space, the condition changes to:
Cr>148.8162−0.1626*Cb+0.2836*(pixel/region saturation+5) and
Cr>1.2639*Cb−33.7803+0.4279*(pixel/region saturation+5)
where pixel/region saturation is defined as:
√{square root over (((Cr−128)2+(Cb−128)2))}{square root over (((Cr−128)2+(Cb−128)2))}
In the third embodiment, the color segmentation condition is represented in RGB color space as:
R>G+K and R>B+K or
I>240
where I=0.3R+0.59G+0.11B
The corresponding color segmentation condition in YCC space is:
Cr>148.8162−0.1626*Cb+0.4726*K and
Cr>1.2639*Cb−33.7803+0.7133*K or
Y>240
where K is a constant or with corresponding changes where K is dependent on pixel/region saturation.
The additional condition that the intensity is greater than 240 is added to ensure that portions of the face that are overexposed are included in the resulting face-map, when, for example, chrominance information is destroyed and luminance levels are high.
Using this embodiment, “skin segmentation” is automatically adjusted as a function of the saturation of the image. For example if the image is very saturated (pixel/region saturation is large), the distance between the planes R&G and R&B will be large and so the formula which provides skin segmentation is R>G+K(big) and R>B+K(big). When saturation is very small, the color planes are very close, i.e. R≅G≅B, so the formula which provides skin segmentation is R>G+K(small) and R>B+K(small).
In a further embodiment of the present invention, the color segmentation condition is implemented as a real valued function, which returns a value indicative of an orthogonal distance of a pixel from the condition test plane(s). According to the basis of the present invention, i.e. that face regions comprise a reddish skin tone, the further the pixel from the test plane, the more face-like the pixel. Thus, pixels neighboring eye sockets, for example, are likely to be less red and therefore, have lower (possibly negative) orthogonal distance values. Correspondingly, pixels located around a cheek area of the face will have higher orthogonal distance values. In this way, a contour map of a face is produced.
So referring to
All of the embodiments described above may be incorporated into or cooperate with further image processing techniques, such as face detection, face tracking, red-eye detection and correction and the like. For example, U.S. patent application Ser. No. 11/464,083, filed Aug. 11, 2006, which is hereby incorporated by reference, relates to an improved method of face tracking in a digital image (see also, US published applications nos. 2006/0204110 and U.S. application 60/821,165, as well as US published applications nos. 2005/0041121 and 2005/0140801, which are all incorporated by reference, wherein the latter two applications may be combined with the color segmentation described herein for identifying face skin pixels as distinguished from red eye pixels). The present invention can be used to quickly determine the location of potential face regions to enable the system of U.S. patent application Ser. No. 11/464,083 to limit the regions of an image to which more sophisticated face detection needs to be applied. Alternatively, the face contour technique described above can be used within face regions detected with the system of U.S. patent application Ser. No. 11/464,083 to more quickly identify and locate specific facial features for use in further processing, for example, to determine if the subject is blinking, smiling etc.
A method of color segmentation in a digital image to aid face detection may be combined with methods described above or claimed below in an alternative embodiment (see, e.g., U.S. Pat. No. 6,661,907, which is incorporated by reference). The method may involve partitioning the image into color regions by seeking connected groups of pixels of similar colors over a local region and representing each region by an average color value of that region in RGB color space to produce a color map. A chromatic characteristic of the average color value pixel for each region may be compared with a threshold and the regions may be identified as either skin or non-skin regions accordingly. The identified skin regions may then be further analyzed to detect face characteristics.
The invention is not limited to the embodiments described herein which may be modified or varied without departing from the scope of the invention, as set forth in the claims below, and structural and functional equivalents thereof. Also in methods described above and/or claimed below, the elements need not be performed only in the order recited.
This application is a Continuation of U.S. patent application Ser. No. 11/624,683, filed Jan. 18, 2007, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4456354 | Mizokami | Jun 1984 | A |
4690536 | Nakai et al. | Sep 1987 | A |
5130935 | Takiguchi | Jul 1992 | A |
5629752 | Kinjo | May 1997 | A |
5774591 | Black et al. | Jun 1998 | A |
5802220 | Black et al. | Sep 1998 | A |
6181805 | Koike et al. | Jan 2001 | B1 |
6275614 | Krishnamurthy et al. | Aug 2001 | B1 |
6393136 | Amir et al. | May 2002 | B1 |
6504546 | Cosatto et al. | Jan 2003 | B1 |
6661907 | Ho et al. | Dec 2003 | B2 |
6678407 | Tajima | Jan 2004 | B1 |
6816156 | Sukeno et al. | Nov 2004 | B2 |
6885760 | Yamada et al. | Apr 2005 | B2 |
7024053 | Enomoto | Apr 2006 | B2 |
7088386 | Goto | Aug 2006 | B2 |
7321391 | Ishige | Jan 2008 | B2 |
7352393 | Sakamoto | Apr 2008 | B2 |
7502494 | Tafuku et al. | Mar 2009 | B2 |
7551211 | Taguchi et al. | Jun 2009 | B2 |
7612794 | He et al. | Nov 2009 | B2 |
7620214 | Chen et al. | Nov 2009 | B2 |
7623733 | Hirosawa | Nov 2009 | B2 |
7636485 | Simon et al. | Dec 2009 | B2 |
7652693 | Miyashita et al. | Jan 2010 | B2 |
7733388 | Asaeda | Jun 2010 | B2 |
8055067 | Petrescu et al. | Nov 2011 | B2 |
20020081003 | Sobol | Jun 2002 | A1 |
20030117501 | Shirakawa | Jun 2003 | A1 |
20050036044 | Funakura | Feb 2005 | A1 |
20050041121 | Steinberg et al. | Feb 2005 | A1 |
20050140801 | Prilutsky et al. | Jun 2005 | A1 |
20060204110 | Steinberg et al. | Sep 2006 | A1 |
20060228037 | Simon et al. | Oct 2006 | A1 |
20080025577 | Kugo et al. | Jan 2008 | A1 |
20090052750 | Steinberg et al. | Feb 2009 | A1 |
20090175609 | Tan | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1441497 | Jul 2004 | EP |
1453002 | Sep 2004 | EP |
WO 0076398 | Dec 2000 | WO |
WO 2007128117 | Nov 2007 | WO |
Entry |
---|
Co-pending U.S. Appl. No. 12/790,594, filed May 28, 2010. |
Co-pending U.S. Appl. No. 12/825,280, filed Jun. 28, 2010. |
Co-pending U.S. Appl. No. 12/843,805, filed Jul. 26, 2010. |
Final Office Action mailed Mar. 23, 2010, for U.S. Appl. No. 11/688,236, filed Mar. 19, 2007. |
Final Office Action mailed Nov. 18, 2009, for U.S. Appl. No. 11/554,539, filed Oct. 30, 2006. |
Machin, et al., “Real Time Facial Motion Analysis for Virtual Teleconferencing,” IEEE, 1996, pp. 340-344. |
Ming, et al., “Human Face Orientation Estimation Using Symmetry and Feature Points Analysis,” IEEE, 2000, pp. 1419-1422. |
Non-Final Office Action mailed Apr. 2, 2010, for U.S. Appl. No. 10/608,784, filed Jun. 26, 2003. |
Non-Final Office Action mailed Apr. 30, 2010, for U.S. Appl. No. 11/765,899, filed Jun. 20, 2007. |
Non-Final Office Action mailed Aug. 2, 2010, for U.S. Appl. No. 11/688,236, filed Mar. 19, 2007. |
Non-Final Office Action mailed Aug. 19, 2009, for U.S. Appl. No. 11/773,815, filed Jul. 5, 2007. |
Non-Final Office Action mailed Aug. 20, 2009, for U.S. Appl. No. 11/773,855, filed Jul. 5, 2007. |
Non-Final Office Action mailed Jan. 20, 2010, for U.S. Appl. No. 12/262,024, filed Oct. 30, 2008. |
Non-Final Office Action mailed Jun. 16, 2010, for U.S. Appl. No. 12/482,305, filed Jun. 10, 2009. |
Non-Final Office Action mailed Jun. 22, 2010, for U.S. Appl. No. 12/055,958, filed Mar. 26, 2008. |
Non-Final Office Action mailed Jun. 23, 2010, for U.S. Appl. No. 11/941,156, filed Nov. 18, 2007. |
Non-Final Office Action mailed May 12, 2010, for U.S. Appl. No. 11/554,539, filed Oct. 30, 2007. |
Non-Final Office Action mailed Sep. 8, 2009, for U.S. Appl. No. 11/688,236, filed Mar. 19, 2007. |
Notice of Allowance mailed Aug. 23, 2010, for U.S. Appl. No. 12/262,024, filed Oct. 30, 2008. |
Notice of Allowance mailed Jun. 10, 2010, for U.S. Appl. No. 12/262,024, filed Oct. 30, 2008. |
Notice of Allowance mailed Sep. 28, 2009, for U.S. Appl. No. 12/262,037, filed Oct. 30, 2008. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT Application No. PCT/EP2009/005461, dated Apr. 20, 2010, 12 pages. |
Yao, Christina: “Image Cosmetics: An automatic Skin Exfoliation Framework on Static Images” UCSB Four Eyes Lab Imaging, Interaction, and Innovative Interfaces Publications Thesis, Master of Science in Media Arts and Technology Dec. 2005, pp. 1-83, Retrieved from the Internet: URL: http://ilab.cs.ucsb.edu/publications/YaoMS.pdf. |
U.S. Appl. No. 11/464,083, filed Aug. 11, 2006. |
Number | Date | Country | |
---|---|---|---|
20120038787 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11624683 | Jan 2007 | US |
Child | 13230664 | US |