The present invention will be further described in details in conjunction with the accompanying drawings.
The LCD panel 10 has an upper substrate and a lower substrate. A pixel array composed of a plurality of pixel electrodes is provided on one of the upper and lower substrates. Liquid crystal is disposed between the upper and lower substrates.
In accordance with an embodiment of the present invention, the LED backlight device 20 can be implemented by a sidelight type backlight module, of which the basic structure is shown in
In addition to three base light sources 201, 202, 203 of red (R), green (G), blue (B) lights, the backlight device 20 has additional light sources 211 and 213. In the present embodiment, the additional light sources 211 and 213 are another red light source and another blue light source with main wavelengths different from the base red and blue light sources, respectively. That is, the LED backlight device 20 of the present embodiment has five light sources. The five light sources are R1, R2 light sources 201, 211 with different main wavelengths, G light source 202, and B1, B2 light sources 203, 213 with different main wavelengths. It is noted that although the additional red light source and blue light source, which are of the same colors but having different main wavelengths with the base color lights, are used as the additional light sources, the choice for the additional light sources is not limited thereto. Here, the definition of “same color” is similar to general chromatics. For example, a light source of a color other than the three base colors can be used, such as a cyan light source or a yellow (Y) light source. Further, a color light which has a main wavelength the same as that of one of the base lights but has a color coordinate in the color space different from said base light can also be used. In addition, the number of the additional light sources is not limited. In the present embodiment, two additional color light sources are used. However, one or more than two additional color light sources are also possible as required. White balance generally made by RGB color lights should be achieved by five color lights of R1, R2, G, B1 B2, for example.
As described above, the color sequential LCD in accordance with the present invention further has the conversion device 30. Externally inputting image data is set based on R, G, B. However, the light sources have increased to include R1, R2, G, B1, B2. Data signals fed to the LCD panel are also decomposed into R1, R2, G, B1, B2. Accordingly, in the present embodiment, the conversion device 30 converts the image data, adjusts the voltage applied to the liquid crystal by the pixel electrode for each color light so as to control the light intensity passing through the liquid crystal. Thus, correct color tones and gray scales can be displayed.
Under the control of the image data control device 40, the respective light sources in the backlight device 20 of the color sequential LCD emit lights in sequence to achieve an effect of color display. A specific ratio of the light intensities of the respective color lights is obtained by adjusting the light transmittance of the liquid crystal. In the present embodiment, one frame is divided into six sub-frames. The R1 light source emits light during the interval of the first sub-frame; the R2 light source emits light during the interval of the second sub-frame; the G light source emits light during the intervals of the third and fourth sub-frames; the B1 light source emits light during the interval of the fifth sub-frame; the B2 light source emits light during the interval of the sixth sub-frame, as shown in
In the present embodiment, the R1 color light has the main wavelength of 610 nm, the CIE colorimetric value (i.e. color coordinate) thereof is (0.664, 0.336); the R2 color light has the main wavelength of 630 nm, the color coordinate thereof is (0.685, 0.315); the G color light has the main wavelength of 525 nm, the color coordinate thereof is (0.166, 0.735); the B1 color light has the main wavelength of 470 nm, the color coordinate thereof is (0.124, 0.075); the B2 color light has the main wavelength of 455 nm, the color coordinate thereof is (0.148, 0.040). Referring to
In the present embodiment, additional color lights having the different main wavelengths with the three base color lights are used to expand the gamut. However, as described, even the color lights having the same main wavelengths as the base color lights can also be used. There is a phenomenon called “metamerism” in chromatics. Color lights of the same color have the same main wavelength but different spectrums, results in the color coordinates thereof are different. For example, two red lights both have the main wavelength of 615 mm. However, due to different spectrums, the color coordinates of the two red lights are respectively (0.6207, 0.3204) and (0.6278, 0.3204). If one of these two red lights is used as one of the three base color lights, then the other red light can be used as the additional color light. It is noted that no matter the additional color light has the same or different wavelength with the base color lights, the color coordinate thereof should be different to that of any of the three base color lights. In addition, the color coordinate of the additional color light should fall outside the gamut range defined by the three base color lights in the color space to expand the color gamut.
While the preferred embodiments of the present invention have been illustrated and described in details, various modifications and alterations can be made by persons skilled in this art. The embodiments of the present invention are therefore described in an illustrative but not restrictive sense. It is intended that the present invention should not be limited to the particular forms as illustrated, and that all modifications and alterations which maintain the spirit and realm of the present invention are within the scope as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
095139231 | Oct 2006 | TW | national |