The present invention generally relates to light emitting diode (“LED”) circuits for use with AC voltage sources. More specifically, the present invention relates to LED devices capable of having color temperature control, low total harmonic distortion, and methods of driving the same.
None.
LEDs are semiconductor devices that produce light when a current is supplied to them. LEDs are intrinsically DC devices that only pass current in one polarity, and historically have been driven by constant current or constant voltage DC power supplies. When driven by these DC power supplies, LEDs are typically provided in a series string, in parallel strings or in series parallel configurations based on the drive method and LED lighting system design.
Recent advancements in the field of lighting have led to the use of LED circuits which are capable of using AC power to drive LEDs configured in particular devices and/or circuit arrangements such that some of the LEDs may operate during the positive phase of the AC power cycle, some LEDs may operate during the negative phase of the AC power cycle, and, in some cases, some or all LEDs may operate during both the positive and negative phases of the AC power cycle. LEDs powered with AC power typically last substantially longer than traditional halogen and incandescent devices or lamps, and typically require much less power to produce a substantially similar amount of light. However, LEDs powered by AC power sources act as a non-linear load. As a result of the non-linearity, LEDs powered using AC power sources may have a lower power factor, and may have a greater total harmonic distortion, than existing halogen or incandescent lighting devices. Having a low power factor and increased distortion may result in higher energy costs, transmission losses, and/or damage to electrical equipment. While the amount of power needed to drive an LED lighting device may be less than to drive a halogen or incandescent lighting device producing a substantially similar amount of light, the overall cost of operating an LED lighting device using AC power may be equal to or more than the amount required to drive the halogen or incandescent lighting device using the same AC power source.
Another advantage that traditional halogen and incandescent lighting devices have over present LED lighting devices driven with AC power is that halogen and incandescent lighting devises have the ability to change color temperature when the voltage provided to them is changed. Light in halogen and incandescent lighting devices are typically generated by a hot wire filament. As the power provided to the bulb is decreased, the temperature of the filament typically decreases, causing the color temperature of the emitted light to move down the color spectrum and make the light appear warmer, i.e. closer to yellow or amber or red than white or blue. In order to achieve this effect in LED lighting devices driven with AC power, complicated and expensive drive schemes are currently required which drive up the cost of the lighting device and the cost to operate the same. One example would be color mixing with red, green and blue LEDs referred to as “RGB” which typically uses pulse width modulation to create any color of light desired. However, the power supplies for this are very complex and larger in size. Other complex versions of constant current or constant voltage DC with only two different LED colors can also be used, however these power supplies can also be large and complex. These drive schemes may also be inefficient and waste additional power or electricity, further increasing operating costs.
Therefore, it would be advantageous to design a circuit, device, or system utilizing LEDs that maximizes power factor while reducing the total harmonic distortion resulting from driving the circuit, device or system using AC power.
It would also be advantageous to design a circuit, device, or system where the color temperature of the LEDs driven with AC power may be dynamically adjusted using simple control methods without having to utilize any complicated or expensive drive mechanisms.
The present invention is provided to solve these and other issues.
Accordingly, the present invention is provided to increase the performance of LED lighting devices driven by AC power. The LED lighting devices of the present invention seek to provide one or more of a color temperature controllable AC LED lighting device and/or an AC LED lighting device having an increased power factor and reduced total harmonic distortion.
According to one aspect of the invention, an LED lighting device having at least two LED circuits connected in parallel, each of the at least two LED circuits having one or more LEDs is provided. Each of the at least two LED circuits that are connected in parallel have a different forward operating voltage than the other LED circuit(s) within the device, and, each of the at least two LED circuits are capable of emitting light having one or more of a different color or wavelength than the other LED circuit(s) within the device. The device further includes at least one active current limiting device connected in series with at least one LED in at least one of the at least two LED circuits. The device and/or circuits are configured such that each LED circuit is capable of emitting light during both a positive and a negative phase of a provided AC voltage when the LED lighting device is connected to an AC voltage source.
According to another aspect of the invention, the at least one current limiting device may be, for example, a current limiting diode or a constant current regulator.
According to another aspect of the invention, each of the LED circuits and the at least one active current limiting device are integrated onto a single substrate to form the device.
According to another aspect of the invention, the device may include additional active current limiting devices, which may also be integrated on the single substrate. Each LED circuit in the device may be connected in series to at least one active current limiting device. Where each LED circuit is connected in series to at least one active current limiting device, each circuit may be connected to its own current limiting device which may each allow a similar or different amount of current to flow through each circuit, or multiple circuits may be connected to at least one common current limiting device which acts to limit the current for each of the circuits.
According to another aspect of the invention, the LED lighting device may include a bridge rectifier having at least one of the at least two LED circuits connected across the output of the bridge rectifier.
According to another aspect of the invention, at least one of the at least two circuits may include two or more LEDs connected in an anti-parallel configuration.
According to another aspect of the invention, at least one of the at least two circuits may include at least five diodes, at least four of the diodes being LEDs. The at least four LEDs may be connected in a bridge rectifier configuration and the at least fifth diode may be connected across the output of the bridge rectifier. The at least fifth diode connected across the output of the bridge rectifier may be a standard diode, an LED or a constant current diode, or may alternatively a constant current regulator.
According to another aspect of the invention, at least one of the at least two circuits may include seven or more diodes, at least six of the diodes being LEDs. The at least six LEDs being connected in an imbalanced bridge rectifier configuration, with the at least seventh diode being connected across the output of the imbalanced bridge rectifier. The at least seventh diode connected across the output of the bridge rectifier may be a standard diode, an LED or a constant current diode, or may alternatively a constant current regulator.
According to another aspect of the invention, the light emitted by the one or more LEDs forming at least one of the at least two LED circuits may be one or more of a different color or wavelength than the light emitted by the one or more LEDs of the other connected LED circuit(s) in the device. Using different colored of LEDs in each circuit will allow each circuit to emit different colors of light to contribute to the overall color temperature of light emitted by the device.
According to another aspect of the invention, each of the at least two circuits may be coated in phosphor, each of the at least two circuits having a different phosphor coating than the other connected at least two LED circuits. The different phosphor coating on each of the at least two circuits may cause each circuit to emit one or more of a different color or wavelength of light than the other connected LED circuits.
According to another aspect of the invention, the LED lighting device may be integrated into a lighting system, the lighting system having a dimmer switch capable of providing AC voltage to the LED lighting device, i.e. the dimmer switch be a connected AC power source or supply. The dimmer switch may be used to control the AC voltage provided to the at least two LED circuits to control the light output of each circuit to control a color temperature of light emitted by the LED lighting device.
According to one aspect of the invention, a method of controlling color temperature of light emitted by an LED lighting device is provided. In order to control the color temperature of the light emitted by the device, at least two LED circuits are connected in parallel. Each connected LED circuit has a different forward operating voltage and is capable of emitting light of one or more of a different color or wavelength than the other LED circuits connected in parallel. The current provided to at least one of the at least two LED circuits is limited, and at least one of the provided voltage and current to control the light output of the LED circuits connected in parallel is adjusted. The voltage and current provided to each circuit may be a direct AC voltage and current or a rectified AC voltage or current, with the possibility that some circuits in the device are provided a direct AC voltage and current and some of the circuits in the device are provided with a rectified AC voltage and current.
According to one aspect of the invention, an LED lighting device is provided. The LED lighting device may include at least one LED circuit having two or more LEDs connected in series, and at least one active current limiting device, the active current limiting device being connected in parallel with the at least one LED in the at least one LED circuit.
According to another aspect of the invention, the LED lighting device may include at least a second active current limiting device, the second active current limiting device being connected in series with the at least one LED circuit.
According to another aspect of the invention, the LED lighting device may further include a bridge rectifier, wherein the at least one LED circuit is connected across the output of the bridge rectifier. The bridge rectifier may be constructed using either standard diodes, LEDs or some combination thereof.
According to another aspect of the invention, the LED lighting device may include at least one additional LED circuit having two or more LEDs connected in series and at least one active current limiting device connected in parallel with at least one of the two or more LEDs, the at least one additional LED circuit being connected to the at least one LED circuit in parallel. The at least one additional LED circuit may be capable of emitting light having one or more of a different color or wavelength than the at least one LED circuit in the device.
According to another aspect of the invention, the at least one LED circuit may include at least three LEDs connected in series.
According to another aspect of the invention, the LED lighting device may include a resistor connected in series with the at least one LED circuit.
According to another aspect of the invention, each active current limiting device may be a constant current regulator or a current limiting diode.
According to one aspect of the invention, an LED lighting device is provided. The LED lighting device includes at least one LED circuit having at least two LEDs connected in series and two sets of connection leads. The first set of connection leads in the device are configured to provide a connection to the at least two—as well as any additional—LEDs in the at least one LED circuit in order to provide a connection to all of the LEDs. The first set of connection leads having a first connection lead and a second connection lead, where the first connection lead is connected to an input of the at least one LED circuit and the second connection lead is connected to an output of the at least one LED circuit. The second set of connection leads in the device include a third connection lead and a fourth connection lead where the third connection lead is connected to the anode of at least one of the at least two LEDs and the fourth connection lead being connected to the cathode of at least one of the at least two LEDs. The second set of connection leads are configured to provide a connection to less than all of the LEDs in the at least one circuit, i.e. only one of two LEDs or only two of four LEDs, etc.
According to another aspect of the invention, at least two LEDs may be configured into at least two sets of LEDs connected in series. Each set of LEDs includes at least one LED, and may have multiple LEDs. The first connection leads may be configured to provide a connection to both of the at least a first and a second set of LEDs, while the second connection leads are configured to provide a connection to only one of the first or second set of LEDs.
According to another aspect of the invention, the at least one circuit may include at least three LEDs, the at least three LEDs being connected in series between the first and second connection lead. Each the at least three LEDs may be configured into at least three sets of LEDs, each set having at least one, and sometimes multiple, LED(s). When the at least one circuit includes at least three LEDs, the third connection lead may connected the anode of the first LED in one of the first, second or third sets of LEDs, i.e. the anode of the first LED in a particular set. The fourth connection lead may be connected to the cathode of the last LED in the same set of LEDs, i.e. if the third connection lead is connected to the anode of the first LED in the first set, the fourth connection lead may be connected to the cathode of the last LED in the first set.
According to another aspect of the invention, the lighting device may be integrated into a lighting system. The lighting system may include a driver having a bridge rectifier, at least two active current limiting devices, and at least three sets of driver connection leads. The first active current limiting device may be connected to the output of the bridge rectifier while the second active current limiting device may be electrically unconnected to the bridge rectifier and the first constant current diode. The first set of driver connection leads may provide a connection for the bridge rectifier to connect to an AC voltage source. The second set of driver connection leads may include a third driver connection lead providing an output from the first active current limiting device connected in series with the output of the bridge rectifier and a fourth driver connection lead providing a return from a load to the bridge rectifier. The third set of driver connections leads may include a fifth driver connection lead providing an input to the second active current limiting device, and a sixth driver connection lead providing an output from the second active current limiting device. When integrating the lighting device, the third driver connection lead may connect to the first connection lead of the lighting device and the fourth driver connection lead may connect to the second connection lead of the lighting device to drive the LED circuit. The fifth driver connection lead may connect to the third connection lead of the lighting device and the sixth driver connection lead may connect to the fourth connection lead of the lighting device to provide a bypass or shunt of the one or more LEDs located between the third and fourth connection leads of the lighting device.
According to one aspect of the invention, an LED lighting device is provided. The LED lighting device includes a bridge rectifier and at least one LED circuit having at least two LEDs connected in series across the output of the bridge rectifier. The lighting device includes two sets of connection leads. The first set of connection leads may be configured to provide a connection to the bridge rectifier with a first connection lead and a second connection lead. The first and second connection leads may be connected to provide an electrical input to and output from the bridge rectifier from an AC power source. The second set of connection leads may be configured to provide a connection to at least one of the least two LEDs connected in series across the output of the bridge rectifier. The second set of connection leads include a third connection lead and a fourth connection lead with the third connection lead being connected to the anode of one of the at least two LEDs and the fourth connection lead being connected to the cathode of one of the at least two LEDs. The second set of connection leads may be configured to provide a connection to all or less than all of the LEDs connected in series across the output of the bridge rectifier. The bridge rectifier may be constructed using diodes, LEDs, or some combination thereof.
According to one aspect of the invention a method of reducing total harmonic distortion in LED lighting circuits and devices is provided. The method requires that at least two LEDs be connected in series and that a bypass around or shunt at least one of the at least two LEDs connected in series is provided. A substantially constant current may be maintained flowing through at least one LED having while at least one LED is bypassed or shunted.
According to another aspect of the invention, an active current limiting device may be used as the bypass or shunt and connected in parallel with at least one of the at least two LEDs to provide the bypass or shunt. The active current limiting device may be a constant current regulator or a current limiting diode.
Other advantages and aspects of the present invention will become apparent upon reading the following description of the drawings and detailed description of the invention.
While this invention is susceptible to embodiments in many different forms, there is described in detail herein, various embodiments of the invention with the understanding that the present disclosures are to be considered as exemplifications of the principles of the invention and are not intended to limit the broad aspects of the invention to the embodiments illustrated.
The present invention is directed to multiple lighting devices or systems, the light emitting circuits contained therein, and methods of driving and operating the same. As discussed herein, a lighting device may include any device capable of emitting light no matter the intention. Examples of lighting devices which are contemplated by this invention include, but are not limited to, LED chips, LED packages, LED chip on board assemblies, LED assemblies or LED modules. The devices may also include any required power connections or leads or contacts, or drivers, required to provide power to the circuits and allow the circuits within the device to emit light. A lighting system may include multiple such devices, and some or all of the required parts to drive such a device or multiple devices, including but not limited to, power supplies, transformers, inverters, rectifiers, sensors or light emitting circuitry discussed herein. While a lighting device may be incorporated into a lighting system or into a lamp or light bulb, it is contemplated that any required light emitting elements may be included within the system directly, whether in the form of a device as a chip or package, or as circuits within the system.
The purposes of the devices described herein are twofold, and may be accomplished independent of each other. One intention of the devices described herein is to provide an LED lighting device capable of efficiently and economically emitting light having a selectable color temperature or a warm-on-dim feature when driven with AC power. The second intention of the devices described herein is to provide LED lighting devices which have an improved power factor and a reduced total harmonic distortion when powered with AC power.
In order to achieve either of the goals of the devices described herein, it may be necessary to include one or more active current limiting devices within each LED lighting device, regardless of whether the device is designed to allow color temperature control, increase power factor while reducing THD, or both. While any known current limiting device which sets a substantially upper limit on the current which is allowed to flow through a circuit may be used with any of the circuits or devices described herein, the devices in the present application will primarily discuss using a constant current regulator (CCR), like for example those sold by ON Semiconductor or operating having the internal structures as shown in the block diagram of
While both CCRs and CLDs may be used interchangeably to accomplish the goals of the devices described herein, there are differences between the devices. The primary difference between the devices is that CCRs, like those sold by ON Semiconductor, typically have internal transistor based control circuits and have little or no turn on voltage. CLDs are a form of a diode which are based in part on a JFET having a gate shorted to the power source and have a measurable turn on voltage. While the CLDs may be utilized with any of the devices described herein, it may be advantageous to use a CCR when possible in order to avoid the additional turn on voltage requirements of the CLD. However, CCRs and CLDs may be used interchangeably to accomplish the goals of the invention.
In devices where one or both of LED circuits 12, 14 include only a single LED, or, as shown in
While single LEDs or series strings like LED circuits 12, 14 may require device 10 to include a bridge rectifier to utilize both phases of connected AC power, one or more of circuits 12, 14 may be modified to use direct AC power without the requirement of rectification. For example, as seen in
Other circuit configurations which may directly use AC power may be utilized in the LED lighting device as well. For example, rather than use a separate bridge rectifier connected to circuits having a single LED or series string of LEDs, one or more of the LED circuits may be configured in a bridge rectifier configuration with an additional diode, LED, CLD or CCR connected across the output of the rectifier. As seen in
In order to further protect the LEDs in a circuit directly using AC power, each circuit in the LED lighting device may be configured in an imbalanced bridge configuration. As seen in
While
Regardless of how many circuits are connected in parallel and the configuration of each circuit, any circuits forming an LED lighting device, along with the at least one active current limiting device, the connection leads and any required rectifiers or additional current limiting devices may be integrated on a single substrate 33 (
While any known method for creating LED circuits capable of emitting light of a different color within a single device is contemplated by the invention, two examples will be discussed herein.
The first method by which the light emitted by each circuit may be made different is by using a different phosphor coating on each circuit. When using a phosphor coating, the color of the LEDs used in each circuit, for example LEDs 16, 18 in
In order to create different forward operating voltages when using a phosphor coating, different colored LEDs having a different turn on voltage may be used, or the circuits may utilize a different number of similar colored LEDs. For example, a first circuit, like circuit 12 in
Using the example of a five blue LED circuit coated in yellow or amber phosphor and a ten blue LED circuit coated in white phosphor for circuits 12, 14 given above, as is known in the art, each blue LED has a turn on voltage of approximately 2.2V and will reach a nominal operating current at approximately 3.2V. The total turn on voltage for circuit 12 having five blue LEDs would therefore be approximately 11V (2.2V time five LEDs) while the nominal current would reached at approximately 16V. The turn on voltage for circuit 14 would be approximately 22V with the nominal current being reached at approximately 32V. Using this example, as voltage is applied to device 10 in
Once the input voltage is increased to 22V, LEDs 18 of circuit 14 will begin emitting white light as a result of the white phosphor coating. As circuit 14 begins emitting white light, the combination of yellow or amber and white light will be emitted by device 10, causing the color temperature to begin moving towards the cooler end of the color spectrum. As the voltage continues to increase to device 10, the amount of white light mixed in with the already fully emitted yellow or amber light will continue to increase as the current in circuit 14 increases, causing the color temperature to become cooler and cooler. As is shown in
By using a set amount of LEDs in each LED circuit and setting the current at a level for one or more of the circuits, the amount of each color of light emitted by the device may be controlled by controlling the input voltage, and the color temperature change and light intensity characteristics can be known and tailored to a desired output.
The second method by which the color of the light emitted by the circuits may be made different is by using different colored LEDs in each circuit. The different colored LEDs will emit light of different colors, thereby causing each circuit to emit light of different colors. However, rather than using different numbers of LEDs to different forward operating voltages, the turn on voltage characteristics of the different colored LEDs may utilized to create the difference depending on the colors of the LEDs in the circuits. As is known in the art, there are two common turn on voltages for LEDs emitting colored light. The first turn on voltage is approximately 1.5V for InP diodes which are typically red, amber and yellow LEDs which each reach their nominal operating current at about 2.2V. The second turn on voltage is approximately 2.2V for GaN diodes which are typically green or blue which reach their nominal operating current at about 3.2V.
When using different colored LEDs, in order to create the amber-white device like that described above, circuit 12 may include five LEDs 16 which emit amber light while circuit 14 may include five LEDs 18 which emit blue light and are coated in white phosphor. Using this example, circuit 12 will begin emitting light at approximately 7.5V (again, if a CCR is connected in series, and at a higher voltage if a CLD is used) and reach nominal current at approximately 11V. Circuit 14 will begin emitting light at 11V but will not reach nominal current until approximately 16V. As circuit 12 begins to emit, a low level of amber light will be emitted by device 10 until the current value of the series active current limiting device is reached. The active current limiting device connected in series with the LEDs of circuit 12 may be set to prevent the current from rising higher than the nominal current value for the circuit, effectively fixing the intensity of light emitted by circuit 12 while protecting the one or more LEDs therein from overdrive as the voltage increases. As the voltage increases to 11V, circuit 14 will begin emitting white light, cooling the color temperature of the light emitted by device 10. The cooling will continue until either the voltage stops rising, or an active current limiting device connected in series with circuit 14 prevents the current flowing through circuit 14 from rising higher. As the voltage is decreased, the current and intensity of light emitted by circuit 14 will fall, causing the light to both dim and become warmer as the amount of light emitted from the amber LEDs will provide a greater percentage of the light emitted, creating a warmer color temperature colored light. At approximately 11V circuit 14 will turn off, and only circuit 12 and the amber LEDs will continue to emit light, creating a warmer and dimmer light as only the amber colored LEDs will be emitting light at this voltage. As the voltage continues to drop towards 7.5V, the amber LEDs will become dimmer and eventually turn off.
In order to control the power provided to device 10, and therefore the voltage and current provided to each circuit and the overall color temperature of the light emitted by device 10 (or 10′, 10″, 10′″), the power provided to device 10 may be adjusted and controlled using any means known in the art. For example, device 10 may be integrated into a lighting system or fixture 40 having a dimmer switch providing the AC power to device 10. As seen in
While the circuits, devices and systems described above will provide an AC LED lighting device option having the ability warm on dim, AC LED devices may be further or alternatively enhanced by increasing the power factor and reducing the total harmonic distortion (THD) of the devices and light emitting circuits therein.
While CCR 110 will help keep the current limited to a threshold value while LEDs 106 are bypassed, once the input voltage to device 100 reaches a level where LEDs 106 will turn on with LEDs 104, 108, the current will be allowed to increase unimpeded through circuit 102 as current will substantially flow through LEDs 104, 106, 108 without a limiter in place to maintain the current. In order to protect all the LEDs in circuit 102 once LEDs 106 reach their turn on voltage, a second active current limiting device, shown in
While circuit 102 in
Alternatively, as seen in
As seen in
An example of a driver and alternative lighting device which may be used to create a lower THD LED lighting device when driven with AC power may be seen in
Each group of LEDs located either inside or outside the second set of connection leads may get categorized as a group, and may include additional connection leads as needed. For example, group 214 may comprise a first set of LEDs, group 216 may comprise a second group of LEDs and group 218 may comprise a third group of LEDs. Though shown in
Providing device 200 with second connection leads 210, 212 instead of a fixed active current limiting device allows for an end user to better control the current that will flow through circuit 202 when the LEDs between connection leads 210, 212 are bypassed or shunted. The connection leads will allow an end user to select a driver or active current limiting bypass which will allow a particular amount of current to flow through the non-bypassed LEDs to create a desired level of luminance from device 200. Creating devices 200 with connection leads instead of bypasses also allows for different LED circuits to be connected to the same bypass or driver if the light needs of device 200 change. For example, device 200 may initially include a circuit which includes 20 LEDs, 10 of which are bypassed, but now requires a circuit of 40 LEDs, 10 of which are bypassed, to provide more light. Rather than have to buy a new LED lighting device having the active current limiting device already incorporated into the device, which may be more costly, the end user would be able to purchase a new LED lighting device having connection leads capable of connecting some of the LEDs to an active current limiting device the end user already has. Such is particularly advantageous if the LEDs in the lighting device fail before the active current limiting device, as a cheaper LED lighting device may be purchased to replace the failed device and the still operational current limiting device may be utilized with the new LED lighting device. Likewise, if the driver or bypass or shunt active current limiting device fails, the LED lighting device may be disconnected from the failed driver or bypass and be re-used with a new driver or bypass.
In order to drive device 200 in
In order to provide a bypass or shunt for one or more of the LEDs in circuit 202, the third set of connection leads 236, 238 in driver 220 should connect to the input and output of CCR 226 respectively. Connection lead 236 may then connect to connection lead 210 while connection lead 238 connects to connection 212 to effectively provide a bypass around the LEDs connected between leads 210, 212 in circuit 202. Since CCR 226 is electrically unconnected to rectifier 222 and CCR 224, it will effectively act as a bypass when connected across one or more of the LEDs in circuit 202 in a substantially identical manner as bypass CCR 110 does in
As seen in
Regardless of whether an active current limiting bypass is incorporated into a device, like in
The improvement of any circuit using an active current limiting device bypass, again regardless of whether it is integrated within the device or externally connected, can be seen in
While the foregoing there has set forth embodiments of the invention, it is to be understood that the present invention may be embodied in other forms without departing from the spirit or central characteristics thereof. The present embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein. While specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the characteristics of the invention and the scope of protection is only limited by the scope of the accompanying claims.
The present application is a continuation of U.S. patent application Ser. No. 15/005,108 filed Jan. 25, 2016, which is a continuation of U.S. patent application Ser. No. 14/362,173 filed Jun. 2, 2014, which is a national phase of PCT Application No. PCT/US2012/067623 filed Dec. 3, 2012, which claims priority to U.S. Provisional Application No. 61/630,025 filed Dec. 2, 2011, U.S. Provisional Application No. 61/570,200 filed Dec. 13, 2011, and is a continuation-in-part of PCT Application No. PCT/US2012/051531 filed Aug. 20, 2012—the contents of all of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3869641 | Goldberg | Mar 1975 | A |
4218627 | Kiesel | Aug 1980 | A |
4271408 | Teshima et al. | Jun 1981 | A |
4298869 | Okuno | Nov 1981 | A |
4506318 | Nilssen | Mar 1985 | A |
4535203 | Jenkins et al. | Aug 1985 | A |
5180952 | Nilssen | Jan 1993 | A |
5442258 | Shibata | Aug 1995 | A |
5699218 | Kadah | Dec 1997 | A |
5790013 | Hauck | Aug 1998 | A |
6107744 | Bavaro et al. | Aug 2000 | A |
6157551 | Barak et al. | Dec 2000 | A |
6380693 | Kastl | Apr 2002 | B1 |
6412971 | Wojnarowski et al. | Jul 2002 | B1 |
6614103 | Durocher et al. | Sep 2003 | B1 |
6762562 | Leong | Jul 2004 | B2 |
6781570 | Arrigo et al. | Aug 2004 | B1 |
7019062 | van Beek et al. | Mar 2006 | B2 |
7019662 | Shackle | Mar 2006 | B2 |
7038400 | Rimmer et al. | May 2006 | B2 |
7053560 | Ng | May 2006 | B1 |
7081722 | Huynh et al. | Jul 2006 | B1 |
7204607 | Yano et al. | Apr 2007 | B2 |
7489086 | Miskin et al. | Feb 2009 | B2 |
7808189 | Hollnberger et al. | Oct 2010 | B2 |
7859196 | Lee et al. | Dec 2010 | B2 |
8148905 | Miskin et al. | Apr 2012 | B2 |
8179055 | Miskin et al. | May 2012 | B2 |
8531118 | Miskin et al. | Sep 2013 | B2 |
8648539 | Miskin et al. | Feb 2014 | B2 |
8710754 | Baddela | Apr 2014 | B2 |
8766548 | Chew | Jul 2014 | B2 |
8841855 | Miskin | Sep 2014 | B2 |
9198237 | Miskin et al. | Nov 2015 | B2 |
9247597 | Miskin et al. | Jan 2016 | B2 |
9380665 | Grajcar et al. | Jun 2016 | B2 |
9426855 | Lee | Aug 2016 | B2 |
9516716 | Miskin et al. | Dec 2016 | B2 |
20020060526 | Timmermans et al. | May 2002 | A1 |
20030043611 | Bockle et al. | Mar 2003 | A1 |
20030122502 | Clauberg et al. | Jul 2003 | A1 |
20030169014 | Kadah | Sep 2003 | A1 |
20030175004 | Garito et al. | Sep 2003 | A1 |
20040080941 | Jiang et al. | Apr 2004 | A1 |
20040105264 | Spero | Jun 2004 | A1 |
20040183380 | Otake | Sep 2004 | A1 |
20040189218 | Leong et al. | Sep 2004 | A1 |
20040201988 | Allen | Oct 2004 | A1 |
20040206970 | Martin | Oct 2004 | A1 |
20050110426 | Shao | May 2005 | A1 |
20050173990 | Anderson et al. | Aug 2005 | A1 |
20050230600 | Olson et al. | Oct 2005 | A1 |
20060038542 | Park et al. | Feb 2006 | A1 |
20060103913 | Handschy et al. | May 2006 | A1 |
20060138971 | Uang et al. | Jun 2006 | A1 |
20060158130 | Furukawa | Jul 2006 | A1 |
20070069663 | Burdalski et al. | Mar 2007 | A1 |
20070273299 | Miskin et al. | Nov 2007 | A1 |
20080094837 | Dobbins | Apr 2008 | A1 |
20080116816 | Neuman et al. | May 2008 | A1 |
20080136347 | Lin et al. | Jun 2008 | A1 |
20080158915 | Williams | Jul 2008 | A1 |
20080203405 | Rooymans | Aug 2008 | A1 |
20080203936 | Mariyama et al. | Aug 2008 | A1 |
20080211421 | Lee | Sep 2008 | A1 |
20080218098 | Lee et al. | Sep 2008 | A1 |
20090221185 | Ng | Jan 2009 | A1 |
20090160361 | Shakuda | Jun 2009 | A1 |
20090174337 | Miskin et al. | Jul 2009 | A1 |
20090295300 | King | Dec 2009 | A1 |
20100039794 | Ghanem et al. | Feb 2010 | A1 |
20100109558 | Chew | May 2010 | A1 |
20100308739 | Shteynberg et al. | Dec 2010 | A1 |
20100308743 | Liang et al. | Dec 2010 | A1 |
20110057572 | Kit et al. | Mar 2011 | A1 |
20110260622 | Hartikka | Oct 2011 | A1 |
20110298393 | Chew | Dec 2011 | A1 |
20120043897 | Miskin et al. | Feb 2012 | A1 |
20120049742 | Lee | Mar 2012 | A1 |
20120081009 | Shteynberg | Apr 2012 | A1 |
20120268008 | Miskin et al. | Oct 2012 | A1 |
20120293083 | Miskin et al. | Nov 2012 | A1 |
20130049602 | Raj | Feb 2013 | A1 |
20130069535 | Athalye | Mar 2013 | A1 |
20130119896 | Fukano | May 2013 | A1 |
20140084801 | Lys | Mar 2014 | A1 |
20140111091 | Grajcar | Apr 2014 | A1 |
20140153232 | Miskin et al. | Jun 2014 | A1 |
20140159584 | Grajcar | Jun 2014 | A1 |
20140239809 | Miskin | Aug 2014 | A1 |
20140285102 | Jain | Sep 2014 | A1 |
20140361696 | Siessegger | Dec 2014 | A1 |
20150115823 | Serra | Apr 2015 | A1 |
20150216006 | Lee | Jul 2015 | A1 |
20160095180 | Miskin | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1 215 944 | Jun 2002 | EP |
08-137429 | May 1996 | JP |
11-016683 | Jan 1999 | JP |
11-330561 | Nov 1999 | JP |
9920085 | Apr 1999 | WO |
2008124701 | Oct 2008 | WO |
2010106375 | Sep 2010 | WO |
WO 2010138211 | Dec 2010 | WO |
2016164928 | Oct 2016 | WO |
Entry |
---|
Written Opinion and International Search Report for International App. No. PCT/US2012/067623, 18 pages. |
M. Rico-Secades, et al., “Driver for high efficiency LED based on flyback stage with current mode control for emergency lighting system,” Industry Applications Conference, Oct. 2004, pp. 1655-1659. |
Robert W. Erickson & Dragen Maksimovic, “Fundamentals of Power Electronics” (Kluwer Academic Publishers, 2nd ed.), p. 576. |
Master Thesis of Srinivasa M. Baddela titled “High Frequency AC Operation of LEDs to Resolve the Current Sharing Problem When Connected in Parallel”. |
Srinivasa M. Baddela and Donald S. Zinger, “Parallel Connected LEDs Operated at High Frequency to Improve Current Sharing,” IAS 2004, pp. 1677-1681. |
Citizen Electronics Co., Ltd.'s datasheet for CL-820-U1N CITILEDs dated Aug. 6, 2007. |
Fairchild Semiconductor Corporation's “Surface Mount LED Lamp Super Bright 0805” datasheet dated Aug. 30, 2001. |
Number | Date | Country | |
---|---|---|---|
20170188426 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
61630025 | Dec 2011 | US | |
61570200 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15005108 | Jan 2016 | US |
Child | 15369218 | US | |
Parent | 14362173 | US | |
Child | 15005108 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2012/051531 | Aug 2012 | US |
Child | 14362173 | US |