This application claims the priority benefit of Taiwan application serial no. 106114349, filed on Apr. 28, 2017. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The disclosure relates to a printing method and particularly relates to a color three-dimensional printing method and a three-dimensional printing equipment.
With the progress of computer-aided manufacturing (CAM), the manufacturing industry has developed three-dimensional printing technology able to rapidly manufacture an original concept of a design. The 3D printing technology is actually a general term of a series of rapid prototyping (RP) technologies. Their basic principles are all related to lamination manufacturing. A rapid prototyping machine forms a cross section shape of a workpiece by scanning in an X-Y plane, and intermittently displaces in thickness of a layer in a Z-coordinate, and forms a 3D object finally. The 3D printing technology does not limit a geometric shape, and even, a more complex part is manufactured, more prominence of RP technology is shown. Further, manpower and processing time can be greatly reduced. Within the minimum time limit, a digital 3D model designed by a computer-aided design (CAD) software can be realized.
For example, fused deposition modeling (FDM) technology turns a forming material into a wire, and heats and melts the forming material to stack the material layer by layer on a forming stage according to the desired shape/contour to form a 3D object. Thus, in the conventional color FDM 3D printing method, the exterior is usually colored after the three-dimensional object is completed, or the three-dimensional object is manufactured by using a colored forming material. In the former case, however, the color ink is only applied to the outer surface of the three-dimensional object, which may be slightly inferior in color properties and variability. In the latter case, it will be required to repeatedly switch to wire materials of different colors in order to achieve the effect of multiple colors, as a result, the efficiency of manufacturing a colored three-dimensional object is low. Accordingly, how to improve the above situation is an issue to be considered by people in the related art.
In this regard, the disclosure provides a color three-dimensional printing method and a three-dimensional printing equipment, able to improve the diversity and aesthetics of color 3D printing.
The disclosure provides a color three-dimensional printing method adapted for manufacturing a 3D object according to a 3D model. The 3D object includes a plurality of layer objects. The method includes following steps. A slicing processing is performed on the 3D model to obtain a printing path file and a plurality of inkjet images, wherein the printing path file includes a plurality of layer controlling data respectively corresponding to the layer objects. A first layer controlling data among the layer controlling data is read, wherein the first layer controlling data records a plurality of printing position points and a plurality of inkjet position points. Movement of a printing head is controlled according to the printing position points and the printing head is controlled to extrude a forming material to establish a first layer object among the layer objects. A first inkjet image among the inkjet images is read. Movement of an inkjet head on a plane is controlled according to the inkjet position points, and the inkjet head is controlled to spray ink on the first layer object according to the first inkjet image.
From another point of view, the disclosure provides a three-dimensional printing equipment including a storage device, a processor and a 3D printing device. The processor is coupled to the storage device and configured to: perform a slicing processing on the 3D model to obtain a printing path file and a plurality of inkjet images, wherein the printing path file comprises a plurality of layer controlling data respectively corresponding to a plurality of layer objects. The 3D printing device is connected to the processor and includes a printing mechanism, an inkjet mechanism and a controller. The printing mechanism includes a printing head and the inkjet mechanism includes an inkjet head. The controller is coupled to the printing mechanism and the inkjet mechanism and configured to: read a first layer controlling data among the layer controlling data, wherein the first layer controlling data includes a plurality of printing position points and a plurality of inkjet position points; control movement of a printing head according to the printing position points and control the printing head to extrude a forming material to establish a first layer object among the layer objects; read a first inkjet image among the inkjet images; and control movement of an inkjet head on a plane according to the inkjet position points and control the inkjet head to spray ink on the first layer object according to the first inkjet image.
Based on the above, the color three-dimensional printing method and the three-dimensional printing equipment of the disclosure may use the printing head to form a layer object on a stage and then use the inkjet head to spray ink on the layer object to form an ink layer. Such that, the layer object of each layer of the colored 3D object has a colored appearance so that the overall color property is improved. Also, different regions of each color ink layer may have different colors so that color variability is improved.
To make the aforementioned and other features and advantages of the disclosure more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
Reference will now be made in detail to the present preferred embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts. Indeed, various embodiments of the disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.
In this embodiment, the storage device 110 may be configured to store data and be a buffer memory, an internal storage medium, an external storage medium, other types of storage devices or a combination of these devices. For instance, the buffer memory may include a random access memory, a read only memory or other similar devices. For instance, the internal storage medium may include a hard disk drive (HDD), a solid state disk, a flash storage device or other similar devices. For instance, the external storage medium may include an external hard drive, a USB drive, a cloud drive, or other similar devices. In this embodiment, the storage device 110 may be used to store the 3D model image, a plurality of slicing images, a 3D image modeling module, an image processing module or an image analysis module, etc., so as to realize the slicing image processing of each of the exemplary embodiments of the disclosure.
In this embodiment, the processor 120 may be configured to execute a plurality of modules stored in the storage device 110 so as to realize the image processing and image analysis of each of the exemplary embodiments of the disclosure. The processor 120 may be a central processing unit (CPU), or other programmable general/specific purpose microprocessors, a digital signal processor (DSP), a programmable controller, application specific integrated circuits (ASIC), a programmable logic device (PLD), other similar processing device or a combination of these devices.
In this embodiment, the 3D printing device 130 may include, for example, a controller 133, a printing mechanism 131 and an inkjet mechanism 132. The processor 120 may provide, according to the slicing information, a control signal to the controller 133 of the 3D printing device 130 to drive the 3D printing device 130. The controller 133 of the 3D printing device 130 may control the printing mechanism 131 and the inkjet mechanism 132 to perform the 3D printing operation and an inkjet operation. For example, the 3D printing operation includes feeding out a forming material and the 3D printing device 130 may perform the inkjet operation on the cured forming material. Further, people having ordinary skills in the art shall understand that the three-dimensional printing device 130 may also include other components required to perform three-dimensional printing together with a printing head (such as a stage, a feeding line, an inkjet line, a printing head linking mechanism, and the like).
Further,
In detail, in this embodiment, the printing head 131a is disposed to move along a XY plane and a normal direction (Z-axis direction) of the XY plane. A forming material 20a is fed into the printing head 131a via a feeding line to be thermally melted, and is extruded through the printing head 131a to be molded layer by layer on the carrying surface S1 of the stage 134 such that a plurality of layer objects (
In this embodiment, the inkjet head 132a sprays ink I1 layer by layer on each of the layer objects to form a plurality of ink layers (
With such arrangement, in this embodiment, after the printing head 131a prints the layer object 80a upon the stage 134, the inkjet head 132a may spray the ink layer 80b on the upper surface of the layer object 80a so as to color the layer object 80a. Then, after the printing head 110 prints another layer object 80c upon the stage 134, the inkjet head 132a may spray the ink layer 80d on the upper surface of the layer object 80c so as to color the layer object 80c. Such that, the layer objects 80a and 80c sequentially stack across the ink layers 80b and 80d so that a color 3D object 80 is formed, wherein the inkjet range and pattern of each ink layer are determined by a plurality of inkjet images in the slicing information.
The controller 133 coupled to the stage 134, the printing head 131a and the inkjet head 132a may be used to receive the slicing information provided by the processor 120 and to control the overall operation of the 3D printing device 130 according to the slicing information so that the 3D object 80 is printed out. For instance, according to a printing path file, the controller 133 controls a movement path of the printing head 131a according to the printing path file, and the printing path file is, for example, a control code file such as a G-code. The controller 133 is, for example, an equipment having a computing function such as a CPU, a chipset, a microprocessor, an embedded controller and the like, the disclosure provides no limitation thereto.
First, in step S301, the processor 120 performs the slicing processing on the 3D model to obtain the printing path file and a plurality of inkjet images, wherein the printing path file includes a plurality of layer controlling data corresponding to a plurality of layer objects respectively. The processor 120, according to a slicing thickness anticipated by the user, generates a plurality of slicing planes parallel to each other and performs the slicing processing on the 3D model via the plurality of the slicing planes to obtain the printing path file and the plurality of the inkjet images. Each of the layer controlling data in the printing path file respectively corresponds to a different layer object so that the controller 133 may control the 3D printing device 130 according to each of the layer controlling data to establish each of the layer objects layer by layer. In this embodiment, the printing path file is a file format readable by the controller 133. The controller 133 may, according to the printing path file, control the movement path and position of the printing head 131a and the inkjet head 132a. In addition, when the processor 120 performs the slicing processing on the colored 3D model, the inkjet images corresponding to all or a part of the layer objects will be generated.
In step S302, the controller 133 reads a first layer controlling data in the layer controlling data, wherein the first layer controlling data records a plurality of printing position points and a plurality of inkjet position points. The printing path file is G-code, for example, including control code segments respectively corresponding to different layer objects and the control code segments are called layer controlling data. The first layer controlling data corresponding to a first layer object among the plurality of layer controlling data include coordinates of the plurality of the printing position points and the plurality of the inkjet position points. Then, in step S303, the controller 133, according to the printing position points, controls the movement of the printing head 131a to extrude the forming material 20a to establish the first layer object in the layer objects.
Then, in step S304, the controller 133 reads a first inkjet image among the inkjet images. Further, according to an instruction in the first layer controlling data of the first layer object, the controller 133 reads the first inkjet image corresponding to the first layer object. In step S305, the controller 133, according to the inkjet position points, controls the movement of the inkjet head 132a on the XY plane and controls the inkjet head 132a according to the first inkjet image to spray the ink I1 on the first layer object. However, although only the single first layer object is served as an example to the above, people of ordinary skill in the art of the exemplary examples may deduce the operations of the above steps S302 to S305 to each layer object.
To state the exemplary examples in detail,
Based on the above, the controller 133 may associate the inkjet range starting point (i.e., the inkjet starting point S_1) with a starting point pixel B_1 of the first inkjet image img_1, and associate the inkjet range end point (i.e., the inkjet end point E_m) with an end point pixel B_e of the first inkjet image img_1 so that an inkjet order corresponding to each pixel of the first inkjet image img_1 is determined. In detail, the first inkjet image img_1 is composed of a plurality of pixels. For instance, the first row pixels of the first inkjet image img_1 include n-th pixels B_1 to B_n. Each of the plurality of the pixels B_1 to B_n has corresponding pixel color data. After the controller 133 associates the inkjet range starting point with the starting point pixel B_1 and associates the inkjet end point with the first inkjet end point pixel B_e, an inkjet order of each pixel of the first inkjet image img_1 is determined. Take the first row pixels B_1 to B_n as an example, the pixel color data of the first row pixels B_1 to B_n are sequentially read from left to right and printed accordingly.
Further, the controller 133 may control the inkjet head 132a to move along an inkjet path P_1 between the inkjet starting point S_1 among the inkjet starting points S_1 to S_m and the inkjet end point E_1 among the inkjet end points E_1 to E_m. Meanwhile, the controller 133 controls the inkjet head 132a according to the pixels B_1 to B_n corresponding to the first inkjet path P_1 on the first inkjet image img_1 to spray the ink on the layer object. Then, the controller 133 controls the inkjet head 132a to move from the first inkjet end point E_1 to the inkjet starting point S_2 among the inkjet starting points S_1 to S_m, meanwhile, the inkjet head 132a stops spraying ink. Then, the controller 133 controls the inkjet head 132a to move along a second inkjet path P_2 between the inkjet starting point S_2 and the inkjet end point E_2 among the inkjet end points E_1 to E_m. Meanwhile, the controller 133 controls the inkjet head 132a according to pixels corresponding to the second inkjet path P_2 on the first inkjet image img_1 to spray the ink on the layer object. Repeat the above operations. Finally, the controller 133 controls the inkjet head 132a to move along the second inkjet path P_m between the inkjet starting point S_m and the inkjet end point E_m. In the meanwhile, the controller 133 controls the inkjet head 132a according to the last row pixels corresponding to the second inkjet path P_m on the first inkjet image img_1 to spray the ink on the layer object. Such that, the controller 133 controls the inkjet head 132a to move by row and according the pixel color data of each pixel on the first inkjet image img_1 determines whether to spray the ink and ink color so that an ink layer of an inkjet pattern Pat_1 will be coated on the corresponding layer object.
However, it should be stated that, in the circumstance that a bottom surface (attached to a surface of a stage, such as the stage 134 in
In step S501, the processor 120 slices the 3D model by using a plurality of slice planes. In step S502, the processor 120 obtains the printing path file and a plurality of the inkjet images. It should be stated that the inkjet images include the first inkjet image corresponding to the first layer object and the second inkjet image corresponding to the second layer object, and a printing order of the first layer object is later than a printing order of the second layer object. In other words, the first layer object stacks on the second layer object. In step S503, the processor 120 determines whether a plurality of polygon meshes of the 3D model are a horizontal plane. The 3D model is composed of the plurality of polygon meshes, which may be triangular meshes, quadrilateral meshes, other concave geometric polygon meshes, or other convex geometric polygon meshes, and the disclosure is not limited thereto. A polygon mesh includes multiple vertices, multiple edges and a face. In this embodiment, the processor 120 determines whether the faces of the plurality of polygon meshes are horizontal planes. Here, the horizontal plane of this embodiment is parallel to the XY plane.
In an embodiment, the slice planes for slicing processing of the processor 120 includes a first slice plane and a second slice plane adjacent to each other. The processor 120 determines whether a plurality of vertices of a first polygon mesh in the polygon meshes are located in a space between the first slice plane and the second slice plane. For instance, the mathematical expression of the first slice plane is Z=a, and the mathematical expression of the second slice plane is Z=b. The processor 120 determines whether Z-axis coordinates of three vertices of a triangular mesh are between a and b to determine whether the three vertices of the triangular mesh are in the space between the first slice plane and the second slice plane. It should be noted that when all the three vertices of the triangular mesh just fall on the first slice plane or the second slice plane, the three vertices of the triangular mesh are determined to be located in the space between the first slice plane and the second slice plane. In an embodiment, if a layer thickness is h, when the three vertices of the first polygon mesh lie in the space between the first slice plane (the mathematical expression is Z=a −0.5 h) and the second slice plane (the mathematical expression is Z=a+0.5 h), the processor 120 determines that the first polygon mesh belongs to the a-th layer of layer object and is a horizontal plane. Then, if each of the vertices of the first polygon mesh is located in the space between the first slice plane and the second slice plane, the processor 120 determines that the first polygon mesh is a horizontal plane. If the vertices of the first polygon cell are not all located in the space between the first slice plane and the second slice plane, the processor 120 determines that the first polygon mesh is not a horizontal plane.
Then, if the processor 120 determines that the plurality of the polygon meshes are not the horizontal plane (determined as No in step S503), in step S504, a primary inkjet image is not adjusted by the processor 120. In step S505, if the first polygon mesh among the polygon meshes is the horizontal plane, the processor 120 determines that a normal vector of the first polygon mesh faces a positive axial direction or a negative axial direction, and the normal vector of the first polygon mesh is a normal vector of the face, which vector direction is point toward outside of the 3D model. Since the definition of the horizontal plane of this embodiment is the XY plane, the positive axial direction is a positive Z-axis direction and the negative axial direction is a negative Z-axis direction. By determining whether the normal vector of the first polygon mesh faces the positive axial direction or the negative direction, the processor 120 can know that the first polygon mesh being the horizontal plane corresponds to a sealing top surface or a sealing bottom surface of the 3D object. The sealing bottom surface includes a lowest bottom surface and the suspended bottom surface of the 3D object.
In step S506, if the normal vector of the first polygon mesh faces the positive axial direction, the processor 120 retains an inkjet block corresponding to the first polygon mesh in the second inkjet image corresponding to the second layer object. In other words, if the normal vector of the first polygon mesh faces the positive axial direction, it represents that the first polygon mesh corresponds to the sealing top surface of the 3D object. In this sense, the processor 120 does not change the inkjet block corresponding to the first polygon mesh and retains the inkjet block corresponding to the first polygon mesh in the second inkjet image corresponding to the second layer object. In step S507, if the normal vector of the first polygon mesh faces the negative axial direction, the processor 120 deletes the inkjet block corresponding to the first polygon mesh from the second inkjet image and adds an inkjet block in the first inkjet image. In other words, if the normal vector of the first polygon mesh faces the negative axial direction, it represents that the first polygon mesh corresponds to the sealing bottom surface of the 3D object. In this sense, the processor 120 deletes the inkjet block corresponding to the first polygon mesh from the second inkjet image originally corresponding to the second layer object and adds the inkjet block corresponding into the first polygon mesh to the first inkjet image corresponding to the former layer object (namely, the first layer object stacked on the second layer object).
For instance,
As shown in
Such that, during the period in which the 3D printing device 130 establishes a colored 3D object Obj1 according to the 3D model M2, the controller 133 controls the printing head 131a according to the layer controlling data to print the layer object L(i) and further reads the inkjet image img_i′ corresponding to the layer object L(i) among the plurality of the inkjet images. Such that, the controller 133 controls the inkjet head 132a according to the inkjet image img_i′ to spray the ink on the layer object L(i). Briefly, after the printing head 131a prints the layer object L(i), the inkjet head 132a sprays the ink on the layer object L(i) according to the inkjet image img_i′. Then, after the printing head 131a prints the layer object L(i+1) stacked on the layer object L(i), the inkjet head 132a sprays the ink on the layer object L(i+1) according to the inkjet image img_(i+1)′. The inkjet position of the inkjet blocks C1 and C2 will be raised from the lower of the layer object L(i+1) to the upper of the layer object L(i+1). The ink layer ink_1 sprayed by the inkjet head 132a according to each of the pixels of the inkjet blocks C1 and C2 is attached on the layer object L(i+1) instead of sprinkling in the air.
To sum up, the color 3D printing method and 3D printing equipment of the exemplary examples use the printing head to form the layer object on the forming stage and then use the inkjet head to form the ink layer on the layer object to directly dye. Repeatedly, the layer object and the ink layer sequentially stacks across each other so that the colored 3D object is formed. In this sense, the structure of each layer of the colored 3D object has a colored appearance such that the overall color property is improved. Also, different regions of each color ink layer may have different colors to improve color variability. In addition, adjusting the inkjet position of the inkjet block of the horizontal plane may avoid the inkjet head from sprinkling the ink in the air before the sealing bottom surface establishes the layer object for holding the ink to cause level difference between the color property of the 3D object and the 3D model.
Although the disclosure has been described with reference to the above embodiments, it will be apparent to one of the ordinary skill in the art that modifications to the described embodiment may be made without departing from the spirit of the disclosure. Accordingly, the scope of the disclosure will be defined by the attached claims not by the above detailed descriptions.
Number | Date | Country | Kind |
---|---|---|---|
106114349 | Apr 2017 | TW | national |