1. Field of the Invention
This invention relates to color/color temperature tunable light emitting devices and in particular to solid state light sources, such as light emitting diodes, which include a wavelength converting phosphor material to generate a specific color of light.
2. Description of the Related Art
The color of light generated by a light source, in particular light emitting diodes (LEDs), is determined predominantly by the device architecture and materials selection used to generate the light. For example, many LEDs incorporate one or more phosphor materials, which are photo-luminescent materials, which absorb a portion of the radiation emitted by the LED chip/die and re-emit radiation of a different color (wavelength). This is the state of the art in the production of “white” LED light sources. The net color of light generated by such LEDs is the combined native color (wavelength) of light from the LED chip and color re-emitted by the phosphor which is fixed and determined when the LED light is fabricated.
Color switchable light sources are known which comprise red, green and blue LEDs. The color of light output from such a source can be controlled by selective activation of one or more of the different colored LEDs. For example, activation of the blue and red LEDs will generate light which appears purple in color and activation of all three LEDs produces light which appears white in color. A disadvantage of such light sources is the complexity of driver circuitry required to operate these sources.
U.S. Pat. No. 7,014,336 discloses systems and methods of generating colored light. One lighting fixture comprises an array of component illumination sources (different color LEDs) and a processor for controlling the collection of component illumination sources. The processor controls the intensity of the different color LEDs in the array to produce illumination of a selected color within a range bounded by the spectra of the individual LEDs and any filters or other spectrum-altering devices associated with the lighting fixture.
White LEDs are known in the art and are a relatively recent innovation. It was not until LEDs emitting in the blue/ultraviolet part of the electromagnetic spectrum were developed that it became practical to develop white light sources based on LEDs. As taught for example in U.S. Pat. No. 5,998,925, white light generating LEDs (“white LEDs”) include one or more phosphor materials, that is photo-luminescent materials, which absorb a portion of the radiation emitted by the LED and re-emit radiation of a different color (wavelength). Typically, the LED chip or die generates blue light and the phosphor(s) absorb a percentage of the blue light and re-emits yellow light or a combination of green and red light, green and yellow light or yellow and red light. The portion of the blue light generated by the LED that is not absorbed by the phosphor is combined with the light emitted by the phosphor and provides light which appears to the human eye as being nearly white in color.
As is known, the correlated color temperature (CCT) of a white light source is determined by comparing its hue with a theoretical, heated black-body radiator. CCT is specified in Kelvin (K) and corresponds to the temperature of the black-body radiator which radiates the same hue of white light as the light source. The CCT of a white LED is generally determined by the phosphor composition and the quantity of phosphor incorporated in the LED.
White LEDs are often fabricated by mounting the LED chip in a metallic or ceramic cup using an adhesive and then bonding lead wires to the chip. The cup will often have a reflecting inner surface to reflect light out of the device. The phosphor material, which is in powder form, is typically mixed with a silicone binder and the phosphor mixture is then placed on top of the LED chip. A problem in fabricating white LEDs is variation of CCT and color hue between LEDs that are supposed to be nominally the same. This problem is compounded by the fact that the human eye is extremely sensitive to subtle changes in color hue especially in the “white” color range. A further problem with white LEDs is that their CCT can change over the operating lifetime of the device and such color change is particularly noticeable in lighting sources that comprise a plurality of white LEDs such as LED lighting bars.
To alleviate the problem of color variation in LEDs with phosphor wavelength conversion as is described above, in particular white LEDs, LEDs are categorized post-production using a system of “bin out” or “binning.” In binning, each LED is operated and the actual color of its emitted light measured. The LED is then categorized, or binned according to the actual color of light the device generates, not based on the target CCT with which it was produced. Typically, nine or more bins (regions of color space or color bins) are used to categorize white LEDs. A disadvantage of binning is increased production costs and a low yield rate as often only two out of the nine bins are acceptable for an intended application resulting in supply chain challenges for white LED suppliers and customers.
It is predicted that white LEDs could potentially replace incandescent, fluorescent and neon light sources due to their long operating lifetimes, potentially many hundreds of thousands of hours, and their high efficiency in terms of low power consumption. Recently high brightness white LEDs have been used to replace conventional white fluorescent, mercury vapor lamps and neon lights. Like other lighting sources, the CCT of a white LED is fixed and is determined by the phosphor composition used to fabricate the LED.
U.S. Pat. No. 7,014,336 discloses systems and methods of generating high-quality white light, which is white light having a substantially continuous spectrum within the photopic response (spectral transfer function) of the human eye. Since the eye's photopic response gives a measure of the limits of what the eye can see this sets boundaries on high-quality white light having a wavelength range 400 nm (ultraviolet) to 700 nm (infrared). One system for creating white light comprises three hundred LEDs each of which has a narrow spectral width and a maximum spectral peak spanning a predetermined portion of the 400 to 700 nm wavelength range. By selectively controlling the intensity of each of the LEDs the color temperature (and also color) can be controlled. A further lighting fixture comprises nine LEDs having a spectral width of 25 nm spaced every 25 nm over the wavelength range. The powers of the LEDs can be adjusted to generate a range of color temperatures (and colors as well) by adjusting the relative intensities of the nine LEDs. It is also proposed to use fewer LEDs to generate white light, provided each LED has an increased spectral width to maintain a substantially continuous spectrum that fills the photopic response of the eye. Another lighting fixture comprises using one or more white LEDs and providing an optical high-pass filter to change the color temperature of the white light. By providing a series of interchangeable filters this enables a single light fixture to produce white light of any temperature by specifying a series of ranges for the various filters. Whilst such systems can produce high-quality white light such fixtures are too expensive for many applications due to the complexity of fabricating a plurality of discrete single color LEDs and due to the control circuitry required for operating them.
A need exists therefore for a color tunable light source that overcomes the limitations of the known sources and in particular an inexpensive solid state light source such as an LED which includes a wavelength converting phosphor material, whose color and/or CCT of light emission is at least in part tunable.
The present invention arose in an endeavor to provide a light emitting device whose color is at least in part tunable. Moreover, the present invention, at least in part, addresses the problem of color hue variation of LEDs that include phosphor wavelength conversion and attempts to reduce or even eliminate the need for binning. A further object of the invention is to provide an inexpensive color tunable light source compared with multi-colored LED packages.
According to the invention there is provided a color tunable light emitting device comprising: an excitation source, such as a LED, that is operable to generate light of a first wavelength range and a wavelength converting component comprising at least one phosphor material which is operable to convert at least a part of the light into light of a second wavelength range, wherein light emitted by the device comprises the combined light of the first and second wavelength ranges, wherein the wavelength converting component has a wavelength converting property that varies spatially and wherein color of light generated by the source is tunable by a relative movement of the wavelength converting component and excitation source such that the light of the first wavelength range is incident on a different part of the wavelength converting component. A particular advantage of the light emitting device of the invention is that since its color temperature can be accurately set post-production this eliminates the need for expensive binning. As well as the manufacturer or installer setting the color/color temperature a user can periodically adjust the color/color temperature throughout the lifetime of the device or more frequently for “mood” lighting.
The wavelength converting component can be moveable relative to the excitation source and can have a wavelength converting property that varies: along a single dimension, along two dimensions or rotationally. The wavelength converting properties of the component can be configured to vary by a spatial variation in a concentration (density) per unit area of the phosphor material. Such a variation can comprise a spatial variation in thickness of the at least one phosphor material such as a thickness that varies substantially linearly. In one arrangement, the at least one phosphor is incorporated in a transparent material, such as an acrylic or silicone material, with a concentration of phosphor material per unit volume of transparent material that is substantially constant and the thickness of the wavelength converting component varies spatially. An example of one such component is wedge-shaped and has a thickness that tapers along the length of the component. In an alternative arrangement the wavelength converting component comprises a transparent carrier on a surface of which the phosphor material is provided. In a preferred implementation, the phosphor material is provided as a spatially varying pattern, such as for example a pattern of dots or lines of varying size and/or spacing, such that the concentration per unit area of the at least one phosphor material varies spatially. In such an arrangement the thickness and concentration of the phosphor material can be substantially constant. The phosphor material can be deposited on the carrier using a dispenser to selectively dispense the phosphor material or printed using screen printing.
The wavelength converting component can further comprise a second phosphor material which is operable to convert at least a part of the light of the first wavelength range into light of a third wavelength range, such that light emitted by the device comprises the combined light of the first, second and third wavelength ranges and a concentration per unit area of the second phosphor material varied spatially.
The light emitting device can further comprise a second wavelength converting component comprising a second phosphor material which is operable to convert at least a part of the light of the first wavelength range into light of a third wavelength range, wherein light emitted by the device comprises the combined light of the first, second and third wavelength ranges wherein the second wavelength converting component has a wavelength converting property that varies spatially and wherein color of light generated by the source is tunable by moving the first and second wavelength converting components relative to the excitation source such that the light of the first wavelength range is incident on different parts of the first and second wavelength converting components. Preferably, the first and second wavelength converting components are independently moveable with respect to one another and to the excitation source. Such an arrangement enables color tuning over an area of color space.
As in the first wavelength converting component the concentration of the second phosphor per unit area can vary spatially with, for example, a variation in phosphor thickness or a variation in a pattern of phosphor material.
In a further embodiment of the invention there is provided a color tunable light emitting device comprising: a plurality of light emitting diodes operable to generate light of a first wavelength and a wavelength converting component which is operable to convert at least a part of the excitation radiation into light of a second wavelength, wherein light emitted by the device comprises the combined light of the first and second wavelength ranges and wherein the wavelength converting component comprises a plurality of wavelength converting regions comprising at least one phosphor material in which a respective region is associated with a respective one of the light emitting diode and wherein each region has a wavelength converting property that varies spatially and wherein color of light generated by the device is tunable by moving the component relative to the light emitting diodes such that the light of the first wavelength range from each light emitting diode is incident on a different part of its respective wavelength converting region.
In one arrangement the plurality of light emitting diodes comprises a linear array and the wavelength converting regions comprise a corresponding linear array and the source is tunable by linearly displacing the component relative to the array of light emitting diodes. Alternatively, the plurality of light emitting diodes comprise a two dimensional array and the wavelength converting regions comprise a corresponding two dimensional array and wherein the source is tunable by displacing the component relative to the array of light emitting diodes along two dimensions.
In a yet further arrangement, the plurality of light emitting diodes comprise a circular array and the wavelength converting regions comprise a corresponding circular array and the device is tunable by rotationally displacing the component relative to array of light emitting diodes.
In order that the present invention is better understood embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
Embodiments of the invention are based on a wavelength converting component that has a wavelength converting property (characteristic) that varies spatially and which is used to convert light from an excitation source, typically a light emitting diode (LED), which is of one wavelength range (color) into light of a different wavelength range (color). The color of light generated by the device, which comprises the combined light of the first and second wavelength ranges, can be controlled (tuned) by moving the component relative to the excitation source to change the total proportion of light of the second wavelength range.
Referring to
In the example embodiment illustrated, the wavelength converting component 16 is tapered in form (wedge-shaped) and tapers in thickness between thicknesses t and T along its direction 18 of intended movement. The wavelength conversion component 16 can be fabricated from a transparent substrate material, for example an acrylic or silicone material such as GE's RTV615, which incorporates a phosphor (photo luminescent or wavelength converting) material. As is known, phosphor materials absorb excitation radiation (light) of a first wavelength and re-emit light of a longer wavelength λ2, for example green in color. The phosphor material, which is in powder form, is substantially uniformly distributed throughout the acrylic material and has a weight ratio loading of phosphor to acrylic in a typical range 5 to 50% depending on the intended color range of operation of the light device 10. Since the phosphor material is uniformly distributed throughout the component, that is the concentration of phosphor per unit volume of substrate material is substantially constant, and the component varies in thickness along its length, the quantity of phosphor per unit area (grams per square meter—g/m2) varies in a linear manner along the length of the component. In other words the wavelength converting component 16 has a wavelength converting property (characteristic) that varies along its length.
As represented in
Operation of the device 10 will now be described by way of reference to
In
In
It is intended that light emitting devices in accordance with the invention use inorganic phosphor materials such as for example silicate-based phosphor of a general composition A3Si(OD)5 or A2Si(OD)4 in which Si is silicon, O is oxygen, A comprises strontium (Sr), barium (Ba), magnesium (Mg) or calcium (Ca) and D comprises chlorine (Cl), fluorine (F), nitrogen (N) or sulfur (S). Examples of silicate-based phosphors are disclosed in our co-pending patent applications US2006/0145123, US2006/028122, US2006/261309 and US2007029526 the content of each of which is hereby incorporated by way of reference thereto.
As taught in US2006/0145123, a europium (Eu2+) activated silicate-based green phosphor has the general formula (Sr,A1)x(Si,A2)(O,A3)2+x:Eu2+ in which: A1 is at least one of a 2+ cation, a combination of 1+ and 3+ cations such as for example Mg, Ca, Ba, zinc (Zn), sodium (Na), lithium (Li), bismuth (Bi), yttrium (Y) or cerium (Ce); A2 is a 3+, 4+ or 5+ cation such as for example boron (B), aluminum (Al), gallium (Ga), carbon (C), germanium (Ge), N or phosphorus (P); and A3 is a 1−, 2− or 3− anion such as for example F, Cl, bromine (Br), N or S. The formula is written to indicate that the A1 cation replaces Sr; the A2 cation replaces Si and the A3 anion replaces O. The value of x is an integer or non-integer between 2.5 and 3.5.
US2006/028122 discloses a silicate-based yellow-green phosphor having a formula A2SiO4:Eu2+D, where A is at least one of a divalent metal comprising Sr, Ca, Ba, Mg, Zn or cadmium (Cd); and D is a dopant comprising F, Cl, Br, iodine (I), P, S and N. The dopant D can be present in the phosphor in an amount ranging from about 0.01 to 20 mole percent. The phosphor can comprise (Sr1-x-yBaxMy)SiO4:Eu2+F in which M comprises Ca, Mg, Zn or Cd.
US2006/261309 teaches a two phase silicate-based phosphor having a first phase with a crystal structure substantially the same as that of (M1)2SiO4; and a second phase with a crystal structure substantially the same as that of (M2)3SiO5 in which M1 and M2 each comprise Sr, Ba, Mg, Ca or Zn. At least one phase is activated with divalent europium (Eu2+) and at least one of the phases contains a dopant D comprising F, Cl, Br, S or N. It is believed that at least some of the dopant atoms are located on oxygen atom lattice sites of the host silicate crystal.
US2007/029526 discloses a silicate-based orange phosphor having the formula (Sr1-xMx)yEuzSiO5 in which M is at least one of a divalent metal comprising Ba, Mg, Ca or Zn; 0<x<0.5; 2.6<y<3.3; and 0.001<z<0.5. The phosphor is configured to emit visible light having a peak emission wavelength greater than about 565 nm.
The phosphor can also comprise an aluminate-based material such as is taught in our co-pending patent applications US2006/0158090 and US2006/0027786 the content of each of which is hereby incorporated by way of reference thereto.
US2006/0158090 teaches an aluminate-based green phosphor of formula M1-xEuxAlyO[1+3y/2] in which M is at least one of a divalent metal comprising Ba, Sr, Ca, Mg, Mn, Zn, Cu, Cd, Sm and thulium (Tm) and in which 0.1<x<0.9 and 0.5≦y≦12.
US2006/0027786 discloses an aluminate-based phosphor having the formula (M1-xEux)2-zMgzAlyO[1+3y/2] in which M is at least one of a divalent metal of Ba or Sr. In one composition the phosphor is configured to absorb radiation in a wavelength ranging from about 280 nm to 420 nm, and to emit visible light having a wavelength ranging from about 420 nm to 560 nm and 0.05<x<0.5 or 0.2<x<0.5; 3≦y≦12 and 0.8≦z≦1.2. The phosphor can be further doped with a halogen dopant H such as Cl, Br or I and be of general composition (M1-xEux)2-zMgzAlyO[1+3y/2]:H.
It will be appreciated that the phosphor is not limited to the examples described herein and can comprise any inorganic phosphor material including for example nitride and sulfate phosphor materials, oxy-nitrides and oxy-sulfate phosphors or garnet materials (YAG).
In
In
In
In
In
In
The wavelength converting component has been described as having a tapering thickness such that the concentration of phosphor per unit area varies spatially as a function of position on the component.
In
In
In
In
An advantage of using two different independently controllable wavelength converting components is that the color of generated light 22 is tunable within a color space as is indicated by the cross hatched region 52 of the chromaticity diagram of
The lighting bar 80 comprises seven LEDs 82 that are mounted as a linear array along the length of a bar 84. The bar 84 provides both electrical power to each LED and thermal management of the LEDs and can be mounted to a suitable heat sink (not shown). Each LED 82 comprises an InGaN/GaN (indium gallium nitride/gallium nitride) based LED chip which is packaged in a square housing and includes one or more phosphor materials such that each is operable to generate cold white (CW) light. Typically, the phosphor material can comprise a green-silicate based phosphor material. The area of light emission of each LED is indicated by a circle 86.
The lighting bar 80 further comprises a wavelength converting component in the form of a transparent carrier bar 88 made of a transparent material, such as acrylic, that includes seven wavelength converting regions 90 along its length. The wavelength converting regions 90 have substantially identical wavelength converting characteristics that vary in a direction along the length of the carrier with a respective region 90 corresponding to a respective one of the LEDs 82. Each wavelength converting region can comprises a yellow-silicate based light emitting phosphor material whose concentration per unit area varies substantially linearly along its length. As with the lighting devices described above, the change of concentration can be implemented by incorporating the phosphor material with a transparent binder and varying the thickness of each region along its length as illustrated or by depositing the phosphor material in the form of a pattern whose concentration varies spatially. The carrier bar 88 is movable mounted to the bar 84 by pairs of guides 92 with an underside of the carrier 88 in sliding contact with the LEDs. A thumb lever 94 is pivotally mounted to the bar 84 and a slot in the lever is coupled to stud 96 extending from the upper surface of the carrier 88. Movement of the lever in a direction 98 causes a translation of the carrier relative the LEDs. A locking screw 100 is provided to lock the position of the carrier in relation to bar 88.
In operation, a manufacturer or installer can set the lighting bar 80 to a selected color temperature by loosening the locking screw 100 and operating the lever 94 until the lighting bar generates the required color temperature of output light. It will be appreciated that operation of the lever causes a translation of the carrier and the wavelength converting regions 90 relative to the bar and their respective LED (
In alternative arrangements where it is required to adjust the color temperature more frequently, such as for example “mood” lighting, the carrier can be moved automatically using a motor or actuator such as a piezoelectric or magnetostrictive actuator. Although the LEDs are illustrated as being equally spaced it will be appreciated that they can be unequally spaced provided the spacing of the wavelength converting regions corresponds to the LEDs.
A particular benefit of the light emitting devices in accordance with the invention is that they can eliminate the need for binning. A further advantage is cost reduction compared with multi-colored LED packages and their associated complex control systems.
It will be further appreciated that the present invention is not restricted to the specific embodiments described and that variations can be made that are within the scope of the invention. For example the number and arrangements of LEDs and/or configuration of the wavelength converting component can be adapted for a given application.
This application is a continuation of U.S. patent application Ser. No. 11/906,532, filed on Oct. 1, 2007, entitled “COLOR TUNABLE LIGHT EMITTING DEVICE”, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2681945 | Maurice | Jun 1954 | A |
2681946 | Leverenz | Jun 1954 | A |
3290255 | Smith | Dec 1966 | A |
3593055 | Geusic et al. | Jul 1971 | A |
3670193 | Thorington et al. | Jun 1972 | A |
3676668 | Collins et al. | Jul 1972 | A |
3691482 | Pinnow et al. | Sep 1972 | A |
3709685 | Hercock et al. | Jan 1973 | A |
3743833 | Martie et al. | Jul 1973 | A |
3763405 | Mitsuhata | Oct 1973 | A |
3793046 | Wanmaker et al. | Feb 1974 | A |
3819973 | Hosford | Jun 1974 | A |
3819974 | Stevenson et al. | Jun 1974 | A |
3849707 | Braslau et al. | Nov 1974 | A |
3875456 | Kana et al. | Apr 1975 | A |
3932881 | Mita et al. | Jan 1976 | A |
3937998 | Verstegen et al. | Feb 1976 | A |
3972717 | Wiedemann | Aug 1976 | A |
4047075 | Schoberl | Sep 1977 | A |
4081764 | Christmann et al. | Mar 1978 | A |
4104076 | Pons | Aug 1978 | A |
4143394 | Schoberl | Mar 1979 | A |
4176294 | Thornton, Jr. | Nov 1979 | A |
4176299 | Thornton | Nov 1979 | A |
4211955 | Ray | Jul 1980 | A |
4305019 | Graff et al. | Dec 1981 | A |
4315192 | Skwirut et al. | Feb 1982 | A |
4443532 | Joy et al. | Apr 1984 | A |
4559470 | Murakami et al. | Dec 1985 | A |
4573766 | Bournay, Jr. et al. | Mar 1986 | A |
4618555 | Suzuki et al. | Oct 1986 | A |
4638214 | Beers et al. | Jan 1987 | A |
4667036 | Iden et al. | May 1987 | A |
4678285 | Ohta et al. | Jul 1987 | A |
4682214 | Sato et al. | Jul 1987 | A |
4727003 | Ohseto et al. | Feb 1988 | A |
4772885 | Uehara et al. | Sep 1988 | A |
4792884 | Suman et al. | Dec 1988 | A |
4845223 | Seybold et al. | Jul 1989 | A |
4859539 | Tomko et al. | Aug 1989 | A |
4915478 | Lenko et al. | Apr 1990 | A |
4918497 | Edmond | Apr 1990 | A |
4946621 | Fouassier et al. | Aug 1990 | A |
4992704 | Stinson | Feb 1991 | A |
5003434 | Gonser et al. | Mar 1991 | A |
5077161 | Law | Dec 1991 | A |
5110931 | Dietz et al. | May 1992 | A |
5126214 | Tokailin et al. | Jun 1992 | A |
5126886 | Richardson et al. | Jun 1992 | A |
5131916 | Eichenauer et al. | Jul 1992 | A |
5143433 | Farrell | Sep 1992 | A |
5143438 | Giddens et al. | Sep 1992 | A |
5166761 | Olson et al. | Nov 1992 | A |
5208462 | O'Connor et al. | May 1993 | A |
5210051 | Carter, Jr. | May 1993 | A |
5211467 | Seder | May 1993 | A |
5237182 | Kitagawa et al. | Aug 1993 | A |
5241170 | Field et al. | Aug 1993 | A |
5264034 | Dietz et al. | Nov 1993 | A |
5283425 | Imamura | Feb 1994 | A |
5369289 | Tamaki et al. | Nov 1994 | A |
5405709 | Littman et al. | Apr 1995 | A |
5439971 | Hyche | Aug 1995 | A |
5518808 | Bruno et al. | May 1996 | A |
5535230 | Abe | Jul 1996 | A |
5549844 | Bringley et al. | Aug 1996 | A |
5557168 | Nakajima et al. | Sep 1996 | A |
5563621 | Silsby | Oct 1996 | A |
5578839 | Nakamura et al. | Nov 1996 | A |
5583349 | Norman et al. | Dec 1996 | A |
5585640 | Huston et al. | Dec 1996 | A |
5619356 | Kozo et al. | Apr 1997 | A |
5660461 | Ignatius et al. | Aug 1997 | A |
5677417 | Muellen et al. | Oct 1997 | A |
5679152 | Tischler et al. | Oct 1997 | A |
5763901 | Komoto et al. | Jun 1998 | A |
5770887 | Tadatomo et al. | Jun 1998 | A |
5771039 | Ditzik | Jun 1998 | A |
5777350 | Nakamura et al. | Jul 1998 | A |
5869199 | Kido | Feb 1999 | A |
5887965 | Edens et al. | Mar 1999 | A |
5952680 | Strite | Sep 1999 | A |
5959316 | Lowery | Sep 1999 | A |
5962971 | Chen | Oct 1999 | A |
5977694 | McGuire | Nov 1999 | A |
5993037 | Tomioka et al. | Nov 1999 | A |
6011640 | Hutton | Jan 2000 | A |
6137217 | Pappalardo et al. | Oct 2000 | A |
6340824 | Komoto et al. | Jan 2002 | B1 |
6381072 | Burger | Apr 2002 | B1 |
6444988 | Vizard | Sep 2002 | B1 |
6504301 | Lowery | Jan 2003 | B1 |
6576488 | Collins et al. | Jun 2003 | B2 |
6600175 | Baretz et al. | Jul 2003 | B1 |
6642618 | Yagi et al. | Nov 2003 | B2 |
6642652 | Collins et al. | Nov 2003 | B2 |
6683674 | Mori et al. | Jan 2004 | B2 |
6686691 | Mueller et al. | Feb 2004 | B1 |
6869812 | Liu | Mar 2005 | B1 |
7014336 | Ducharme et al. | Mar 2006 | B1 |
7027238 | Weiss | Apr 2006 | B2 |
7153015 | Brukilacchio | Dec 2006 | B2 |
7218429 | Batchko | May 2007 | B2 |
7233450 | Kao et al. | Jun 2007 | B2 |
7265338 | Kiriyama et al. | Sep 2007 | B2 |
7390437 | Dong et al. | Jun 2008 | B2 |
7462815 | Chua et al. | Dec 2008 | B2 |
7479662 | Soules et al. | Jan 2009 | B2 |
7541728 | Wang et al. | Jun 2009 | B2 |
7615795 | Baretz et al. | Nov 2009 | B2 |
7943945 | Baretz et al. | May 2011 | B2 |
8115779 | Ackermann | Feb 2012 | B2 |
20010009691 | Thompson et al. | Jul 2001 | A1 |
20020090184 | Sayag et al. | Jul 2002 | A1 |
20030042845 | Pires et al. | Mar 2003 | A1 |
20030137844 | Bucher et al. | Jul 2003 | A1 |
20040016938 | Baretz et al. | Jan 2004 | A1 |
20040095767 | Ohmae et al. | May 2004 | A1 |
20040257007 | Lys et al. | Dec 2004 | A1 |
20050093430 | Ibbetson et al. | May 2005 | A1 |
20050221519 | Leung et al. | Oct 2005 | A1 |
20060027786 | Dong et al. | Feb 2006 | A1 |
20060028122 | Wang et al. | Feb 2006 | A1 |
20060049416 | Baretz et al. | Mar 2006 | A1 |
20060145123 | Li et al. | Jul 2006 | A1 |
20060158090 | Wang et al. | Jul 2006 | A1 |
20060261309 | Li et al. | Nov 2006 | A1 |
20070019408 | McGuire, Jr. | Jan 2007 | A1 |
20070029526 | Cheng et al. | Feb 2007 | A1 |
20070097691 | Wu | May 2007 | A1 |
20070132371 | Liu | Jun 2007 | A1 |
20080219303 | Chen et al. | Sep 2008 | A1 |
20080224597 | Baretz et al. | Sep 2008 | A1 |
20080224598 | Baretz et al. | Sep 2008 | A1 |
20080252198 | Katano et al. | Oct 2008 | A1 |
20090034284 | Li et al. | Feb 2009 | A1 |
20100033948 | Harbers et al. | Feb 2010 | A1 |
20100164364 | Eida et al. | Jul 2010 | A1 |
20100315604 | Peeters et al. | Dec 2010 | A1 |
20110116253 | Sugiyama | May 2011 | A1 |
Number | Date | Country |
---|---|---|
647694 | Apr 1995 | EP |
2 017 409 | Oct 1979 | GB |
S50-79379 | Nov 1973 | JP |
60170194 | Sep 1985 | JP |
862-189770 | Aug 1987 | JP |
H01-1794 71 | Jul 1989 | JP |
01-260707 | Oct 1989 | JP |
H02-91980 | Mar 1990 | JP |
H3-24692 | Mar 1991 | JP |
4010665 | Jan 1992 | JP |
4010666 | Jan 1992 | JP |
04-289691 | Oct 1992 | JP |
4-321280 | Nov 1992 | JP |
05-152609 | Jun 1993 | JP |
6207170 | Jul 1994 | JP |
6-267301 | Sep 1994 | JP |
6283755 | Oct 1994 | JP |
07-099345 | Apr 1995 | JP |
H07-176794 | Jul 1995 | JP |
07-235207 | Sep 1995 | JP |
H7-282609 | Oct 1995 | JP |
H08-7614 | Jan 1996 | JP |
8-250281 | Sep 1996 | JP |
2900928 | Mar 1999 | JP |
P2003-234513 | Aug 2003 | JP |
P3724490 | Sep 2005 | JP |
P3724498 | Sep 2005 | JP |
WO 9108508 | Jun 1991 | WO |
Entry |
---|
Non-Final Office Action dated Mar. 31, 2010 for U.S. Appl. No. 11/906,532. |
Final Office Action dated Nov. 12, 2010 for U.S. Appl. No. 11/906,532. |
Non-Final Office Action dated Sep. 15, 2011 for U.S. Appl. No. 11/906,532. |
Final Office Action dated May 15, 2012 for U.S. Appl. No. 11/906,532. |
Notice of Allowance dated Aug. 6, 2012 for U.S. Appl. No. 11/906,532. |
Notice of Allowance dated Mar. 10, 2014 for U.S. Appl. No. 11/906,532. |
International Search Report and Written Opinion dated Dec. 12, 2008 for Intl. Appln. No. PCT/US08/77977, 11 Pages. |
International Search Report and Written Opinion dated Jun. 14, 2012 for Intl. Appln. No. PCT/US12/24032, 8 Pages. |
Foreign Office Action dated May 6, 2011 for China Appln. No. 200880114331.0. |
Foreign Office Action dated Feb. 13, 2012 for China Appln. No. 200880114331.0. |
Foreign Office Action dated Jul. 31, 2012 for China Appln. No. 200880114331.0. |
Foreign Office Action dated Jan. 8, 2013 for Japanese Appln. No. 2010-528045. |
CRC Handbook, 63rd Ed., (1983) p. E-201. |
Lumogen® F Violet 570 Data Sheet; available at the BASF Chemical Company website Lumogen® F Violet 570 Data Sheet; available at the BASF Chemical Company website URL,http://worldaccount.basf.com/wa/EUen—GB/Catalog/Pigments/doc4/BASF/PRD/30048274/.pdt?title=Technicai%20Datasheet&asset—type=pds/pdf&language=EN&urn=urn:documentum:eCommerce—soi—EU :09007bb280021e27.pdf :09007bb280021e27.pdf. |
Saleh and Teich, Fundamentals of Photonics, New York: John Wiley & Sons, 1991, pp. 592-594. |
The Penguin Dictionary of Electronics, 3rd edition, pp. 315, 437-438, 509-510, copyright 1979, 1988, and 1998. |
LEDs and Laser Diodes, Electus Distribution, copyright 2001, available at URL:http://www.jaycar.com.au/images—uploaded/ledlaser.Pdf. |
“Fraunhofer-Gesellschafl: Research News Special1997”, http://www.fhg.de/press/md-e/md1997/sondert2.hlm, (accessed on Jul. 23, 1998), Jan. 1997, Publisher: Fraunhofer Institute. |
Krames, M., et al., “Status and Future of High-Power Light-Emitting Diodes for Solid-Slate Lighting”, “Journal of Display Technology”, Jun. 2007, pp. 160-175, vol. 3, No. 2. |
Kudryashov, V., et al., “Spectra of Superbright Blue and Green InGaN/AlGaN/GaN Light-Emitting diodes”, “Journal of the European Ceramic Society”, May 1996, pp. 2033-2037, vol. 17. |
Lester, S., et al., “High dislocation densities in high efficiency GaN-based light-emitting diodes”, “Appl. Phys. Lett.”, Mar. 6, 1995, pp. 1249-1251, vol. 66, No. 10. |
Mukai, T., et al., “Recent progress of nitride-based light emitting devices”, “Phys. Stat. Sol.”, Sep. 2003, pp. 52-57, vol. 200, No. 1. |
Nakamura, S., et al., “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes”, “Appl. Phys. Lett.”, Sep. 25, 1995, pp. 1868-1870, vol. 67, No. 13. |
Nakamura, S., et al., “The Blue Laser Diode: GaN Based Light Emitters and Lasers”, Mar. 21, 1997, p. 239, Publisher: Springer-Verlag. |
Nakamura, S., et al., “The Blue Laser Diode: The Complete Story, 2nd Revised and Enlarged Edition”, Oct. 2000, pp. 237-240, Publisher: Springer-Verlag. |
Mar. 22, 2012 Office Action in U.S. Appl. No. 12/131,119, issued by Steven Y. Horikoshi. |
Pei, Q, et al., “Polymer Light-Emitting Electrochemical Cells”, “Science”, Aug. 25, 1995, pp. 1086-1088, vol. 269, No. 5227. |
Dictionary Definition of Phosphor, Oxford English Dictionary Online, Mar. 9, 2012 (Only partial available due to corrupt file, on Mar. 22, 2012 in U.S. Appl. No. 12/131,119; Request for Full Reference filed). |
Feb. 21, 2012 Office Action in U.S. Appl. No. 12/131,118, issued by Abul Kalam. |
Jan. 7, 2011 Office Action in U.S. Appl. No. 12/131,119, issued by Steven Y. Horikoshi. |
May 4, 2010 Office Action in U.S. Appl. No. 12/131,119. |
Jul. 7, 2011 Office Action in U.S. Appl. No. 12/131,118, issued by Abu I Kalam. |
Jul. 14, 2011 Office Action in U.S. Appl. No. 12/131,119, issued by Steve Horikoshi. |
Aug. 26, 2010 Office Action in U.S. Appl. No. 12/131,118. |
Sep. 29, 2009 Office Action in U.S. Appl. No. 11/264,124, issued by Abu I Kalam. |
Oct. 20, 2008 Office Action in U.S. Appl. No. 10/623,198, issued by Abu I Kalam. |
Nov. 30, 2010 Office Action in U.S. Appl. No. 12/131,118. |
Dec. 16, 2004 Office Action in U.S. Appl. No. 10/623,198, issued by Thao X. Le. |
Jan. 29, 2007 Office Action in U.S. Appl. No. 10/623,198, issued by Thao X. Le. |
Jan. 30, 2006 Office Action in U.S. Appl. No. 11/264,124, issued by Thao X. Le. |
Feb. 4, 2005 Office Action in U.S. Appl. No. 10/623,198, issued by Thao X. Le. |
Feb. 7, 2007 Office Action in U.S. Appl. No. 11/264,124, issued by Thao X. Le. |
Feb. 26, 2008 Office Action in U.S. Appl. No. 11/264,124, issued by Abu I Kalam. |
Mar. 2, 2009 Office Action in U.S. Appl. No. 10/623,198, issued by Abu I Kalam. |
Mar. 4, 2011 Notice of Allowance, Notice of Allowability, Examiner's Interview Summary, Examiner's Amendment/Comment and Examiner's Statement of Reason for Allowance in U.S. Appl. No. 11/264,124, issued by Abu I Kalam. |
Mar. 7, 2008 Office Action in U.S. Appl. No. 10/623,198, issued by Abu I Kalam. |
Mar. 28, 2006 Office Action in U.S. Appl. No. 10/623,198, issued by Thao X. Le. |
Apr. 15, 2009 Office Action in U.S. Appl. No. 11/264.124, issued by Abu I Kalam. |
Jun. 14, 2006 Office Action in U.S. Appl. No. 11/264,124, issued by Thao X. Le. |
Jun. 26, 2007 Office Action in U.S. Appl. No. 10/623,198, issued by Thao X. Le. |
Jul. 10, 2008 Office Action in U.S. Appl. No. 11/264,124, issued by Abu I Kalam. |
Jul. 14, 2005 Notice of Allowance, Notice of Allowability, and Examiner's Statement of Reasons for Allowance in U.S. Appl. No. 10/623,198, issued by Thao X. Le. |
Aug. 21, 2006 Office Action in U.S. Appl. No. 10/623,198, issued by Thao X. Le. |
Aug. 24, 2007 Office Action in U.S. Appl. No. 11/264,124, issued by Thao X. Le. |
Sep. 17, 2009 Notice of Allowance, Notice of Allowability, Examiner's Amendmeni/Comment, and Examiner's Statement of Reasons for Allowance in U.S. Appl. No. 10/623,198, issued by Abul Kalam. |
Amano, H., et al., “UV and blue electroluminescence from Al/GaN:Mg/GaN LED treated with low-energy electron beam irradiation (LEEBI)”, “Institute of Physics: Conference Series”, 1990, pp. 725-730, vol. 106, No. 10. |
Roman. D., “LEDs Turn a Brighter Blue”, “Electronic Buyers' News”, Jun. 19, 1995, pp. 28 and 35, vol. 960, Publisher: CMP Media LLC. |
Bradfield, P.L., et al., “Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon”, “Appl. Phys. Lett”, 07110/1989, pp. 10D-102D, vol. 55, No. 2. |
Das, N.C., et al., “Luminescence spectra of ann-channel metal-oxide-semiconductor field-effect transistor at breakdown”, 1990, pp. 1152-1153, vol. 56, No. 12. |
Jang, S., “Effect of Avalanche-Induced Light Emission on the Multiplication Factor in Bipolar Junction Transistors”, “Solid-State Electronics”, 1991, pp. 1191-1196, vol. 34, No. 11. |
Pavan, P., et al., “Explanation of Current Crowding Phenomena Induced by Impact Ionization in Advanced Si Bipolar Transistors by Means of . . . ”, “Microelectronic Engineering”, 1992, pp. 699-702, vol. 19. |
Yang, Y., et al., “Voltage controlled two color light-emitting electrochemical cells”, “Appl. Phys. Lett.”, 1996, vol. 68, No. 19. |
Zanoni, E., et al., “Measurements of Avalanche Effects and Light Emission in Advanced Si and SiGe Bipolar Transistors”, “Microelectronic Engineering”, 1991, pp. 23-26, vol. 15. |
Zanoni, E., et al., “Impact ionization, recombination, and visible light emission in ALGaAs/GaAs high electron mobility transistors”, “J. Appl. Phys.”, 1991, pp. 529-531, vol. 70, No. 1. |
Zhiming, Chen, et al., “Amorphous thin film white-LED and its light-emitting mechanism”, “Conference Record of the 1991 International Display Research Conference”, Oct. 1991, pp. 122-125. |
Apr. 14, 2010 Office Action in U.S. Appl. No. 11/264,124. |
Adachi, C. et al., “Blue light-emitting organic electroluminescent devices”, “Appl. Phys. Lett.”, Feb. 26, 1990, pp. 799-801, vol. 56, No. 9. |
Akasaki, Isamu, et al., “Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED”, “Journal of Luminescence”, Jan.-Feb. 1991, pp. 666-670, vol. 48-49 pt. 2. |
Armaroli, N. et al., “Supramolecular Photochemistry and Photophysics.”, “J. Am. Chern. Soc.”, 1994, pp. 5211-5217, vol. 116. |
Berggren, M., et al., “White light from an electroluminescent diode made from poly[3(4-octylphenyl)-2,2′-bithiophene] and an oxadiazole . . . ”, “Journal of Applied Physics”, Dec. 1994, pp. 7530-7534, vol. 76, No. 11. |
Berggren, M. et al., “Light-emitting diodes with variable colours from polymer blends”, “Nature”, Dec. 1, 1994, pp. 444-446, vol. 372. |
Boonkosum, W. et al., “Novel Flat Panel display made of amorphous SiN:H/SiC:H thin film LED”, “Physical Concepts and Materials for Novel Optoelectronic Device Applications II”, 1993, pp. 40-51, vol. 1985. |
Chao, Zhang Jin, et al., “White light emitting glasses”, “Journal of Solid State Chemistry”, 1991, pp. 17-29, vol. 93. |
Comrie, M. , “Full Color LED Added to Lumex's Lineup”, “EBN”, Jun. 19, 1995, p. 28. |
Zdanowski, Marek, “Pulse operating up-converting phosphor LED”, “Electron Technol.”, 1978, pp. 49-61, vol. 11, No. 3. |
Forrest, S. et al. , “Organic emitters promise a new generation of displays”, “Laser Focus World”, Feb. 1995, pp. 99-107. |
Hamada, Y. et al. , “Blue-Light-Emitting Organic Electroluminescent Devices with Oxadiazole Dimer Dyes as an Emitter”, “Jpn. J. Appl. Physics”, Jun. 1992, pp. 1812-1816, vol. 31. |
Hamakawa, Yoshihiro, et al., “Toward a visible light display by amorphous SiC:H alloy system”, “Optoelectronics—Devices and Technologies”, Dec. 1989, pp. 281-294, vol. 4, No. 2. |
Hirano, Masao, et al., “Various performances of fiber-optical temperature sensor utilizing infrared-to-visible conversion phosphor”, “Electrochemisty (JP)”, Feb. 1987, pp. 158-164, vol. 55, No. 2, Publisher: Electrochemical Society of Japan. |
El Jouhari, N., et al., “White light generation using fluorescent glasses activated by Ce3+, Tb3+ and Mn2+ ions”, “Journal De Physique IV, Colloque C2”, Oct. 1992, pp. 257-260, vol. 2. |
Kido, J. et al. , “1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Luminescent Devices”, “Jpn. J. Appl. Phys.”, Jul. 1, 1993, pp. L917-L920, vol. 32. |
Kido, J., et al., “White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with . . . ”, “Appl. Phys. Lett.”, Feb. 14, 1994, pp. 815-817, vol. 64, No. 7. |
Kido, J. et al. , “Bright blue electroluminescence from poly(N-vinylcarbazole)”, “Appl. Phys. Letters”, Nov. 8, 1993, pp. 2627-2629, vol. 63, No. 19. |
Larach, S., et al., “Blue emitting luminescent phosphors: Review and status”, “Int'l Workshop on Electroluminescence”, 1990, pp. 137-143. |
Maruska, H.P., et al., “Violet luminescence of Mg-doped GaN”, “Appl. Phys. Lett.”, Mar. 15, 1973, pp. 303-305, vol. 22, No. 6. |
Maruska, H.P., “Gallium nitride light-emitting diodes (dissertation)”, “Dissertation Submitted to Stanford University”, Nov. 1973. |
McGraw-Hill, “McGraw-Hill Dictionary of Scientific and Technical Terms, Third Edition”, “McGraw-Hill Dictionary of Scientific and Technical Terms”, 1984, pp. 912 and 1446, Publisher: McGraw-Hill. |
McGraw-Hill, “McGraw-Hill Encyclopedia of Science and Technology, Sixth Edition”, “McGraw-Hill Encyclopedia of Science and Technology”, 1987, pp. 582 and 60-63, vol. 9-10, Publisher: McGraw-Hill. |
Mimura, Hidenori, et al., “Visible electroluminescence from uc-SiC/porous Si/c-Si p-n junctions”, “Int. J. Optoelectron.”, 1994, pp. 211-215, vol. 9, No. 2. |
Miura, Noboru, et al., “Several Blue-Emitting Thin-Film Electroluminescent Devices”, “Jpn. J. Appl. Phys.”, Jan. 15, 1992, pp. L46-L48, vol. 31, No. Part 2, No. 1A IB. |
Muench, W.V., et al., “Silicon carbide light-emitting diodes with epitaxial junctions”, “Solid-State Electronics”, Oct. 1976, pp. 871-874, vol. 19, No. 10. |
Pankove, J.I., et al., “Scanning electron microscopy studies of GaN”, “Journal of Applied Physics”, Apr. 1975, pp. 1647-1652, vol. 46, No. 4. |
Sato, Yuichi, et al., “Full-color fluorescent display devices using a near-UV light-emitting diode”, “Japanese Journal of Applied Physics”, Jul. 1996, pp. L838-L839, vol. 35, No. ?A. |
Tanaka, Shosaku, et al., “Bright white-light electroluminescence based on nonradiative energy transfer in Ce-and Eu-doped SrS thin films”, “Applied Physics Letters”, Nov. 23, 1987, pp. 1661-1663, vol. 51, No. 21. |
Tanaka, Shosaku, et al., “White Light Emitting Thin-Film Electroluminescent Devices with SrS:Ce,Cl/ZnS:Mn Double Phosphor Layers”, “Jpn. J. Appl. Phys.”, Mar. 20, 1986, pp. L225-L227, vol. 25, No. 3. |
Ura, M. , “Recent trends of development of silicon monocarbide blue-light emission diodes”, “Kinzoku”, 1989, pp. 11-15, vol. 59, No. 9. |
Werner, K. , “Higher Visibility for LEDs”, “IEEE Spectrum”, Jul. 1994, pp. 30-39. |
Wojciechowski, J. et al. , “Infrared-To-Blue Up-Converting Phosphor”, “Electron Technology”, 1978, pp. 31-47, vol. 11, No. 3. |
Yamaguchi, Y. et al., “High-Brightness SiC Blue LEDs and Their Application to Full Color LED Lamps”, “Optoelectronics-Devices and Technologies”, Jun. 1992, pp. 57-67, vol. 7, No. 1. |
Yoshimi, Masashi, et al., “Amorphous carbon basis blue light electroluminescent device”, “Optoelectronics—Devices and Technologies”, Jun. 1992, pp. 69-81, vol. 7, No. 1. |
Morkoc et al., “Large-band-gap SIC, 111-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys. 76(3), 1; Mar. 17, 1994; Illinois University. |
Reexam Non-Final Office Action dated Sep. 20, 2010 for U.S. Appl. No. 90/010,940. |
Reexam Non-Final Office Action dated Mar. 3, 2011 for U.S. Appl. No. 90/010,940. |
Reexam Final Office Action dated Nov. 7, 2011 for U.S. Appl. No. 90/010,940. |
Reexam Non-Final Office Action dated Jan. 26, 2012 for U.S. Appl. No. 90/010,940. |
Reexam Final Office Action dated May 24, 2012 for U.S. Appl. No. 90/010,940. |
Reexam Advisory Action dated Sep. 28, 2012 for U.S. Appl. No. 90/010,940. |
Foreign Office Action dated Aug. 28, 2013 for Taiwanese Appln. No. 97137791. |
Non-Final Office Action dated Jun. 12, 2014 for U.S. Appl. No. 13/367,325. |
Foreign Office Action dated Jan. 30, 2015 for Korean Appln. No. 10-2010-7009589. |
Number | Date | Country | |
---|---|---|---|
20150077971 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11906532 | Oct 2007 | US |
Child | 14327428 | US |