An exemplary embodiment of the present invention will be described with reference to the accompanying drawings.
Referring to
Referring also to
Referring additionally to
The case 42 is composed of a base section 36 having a double cylindrical framework with major and minor cylinder portions and a lid section 39, and the color wheel unit 30 is built up such that the color wheel assembly 20 is fixed to the base section 36 with a boss 35 of the motor 10 engaging with a circular bottom wall 36b of the base section 36 and then the lid section 39 is attached to the base section 36.
On the case 42, radiation fins 37 are provided at the outer surface of the base section 36 (specifically, the circular bottom wall 36b in
The axial direction position and dimension of the first blades 32 disposed on the outer circumferential surface of the rotor 31 of the motor 10 are determined such that a certain clearance distance is provided from the first blades 32 to the inner surface of the circular bottom wall 36b of the base section 36 as shown in
Since the radial distal end (outermost portion) of the first blades 32 of the first protrusion structure provided at the outer circumferential surface of the rotor 31 is positioned farther from the shaft center A than the radial distal end (innermost portion) of the second blades 38 of the second protrusion structure provided at the inner circumferential surface of the minor cylinder portion of the base section 36 as shown in
In the present embodiment, the circumferential dimension of the second blade 38 is slightly smaller than the circumferential distance between adjacent two of the four first blades 32 disposed equiangularly, and therefore it can happen that the first blade 32 is positioned so as not to overlap with any portion of the second blade 38 (refer to
In the present embodiment, the rotor 31 is made of a metallic material such as aluminum alloy, the first blades 32 are formed integrally with the rotor 31 by aluminum die-casting, or like methods, the base section 36 and the lid section 39 of the case 42 are made of a metallic material such as aluminum alloy, and the radiation fins 37 and the second blades 38 are formed integrally with the base section 36 by aluminum die-casting, or like methods.
Description will now be made on the operation of the color wheel unit 30 described above, and also the structure of the color wheel unit 30 will be further described in conjunction with the operation. While the following description will refer to the directions (or positions), left and right, with respect to the color wheel unit 30 in line with
While the color wheel unit 30 operates, the first blades 32 of the first protrusion structure are caused to oppose portions of the second blades 38 of the second protrusion structure with respect to the direction along the rotary shaft of the rotor 31 except at the time of the disposition state shown in
Referring again to
Accordingly, the plurality of openings 40 formed at the annular rear wall 36a of the base section 36 of the case 42 function mainly as air inlets into the inside of the case 42 while the plurality of openings 41 formed at the circular bottom wall 36b of the base section 36 function mainly as air outlets from the inside of the case 42, whereby air taken inside the case 42 through the openings 40 is caused to flow along the color wheel 3, then axially toward the circular bottom wall 36b, and to exit the case 42 through the openings 41. With the airflow caused as described above, heat generated inside the case 42 can be efficiently released outside.
In this connection, the first blades 32 of the first protrusion structure provided at the outer circumferential surface of the rotor 31 and the second blades 38 of the second protrusion structure provided at the inner surface of the case 42 not only constitute heat transmission paths from the inside of the case 42 to the outer surface of the case 42 as described above but also function as radiation fins for dissipating the heat of the rotor 31 and the heat of the case 42, respectively, thus increasing the heat radiation area of the color wheel unit 30 and also effectively cooling the color wheel unit 30 from inside the case 42.
Further, the first blades 32 are each configured such that the left side (negative pressure side) surface is curved convex, whereby the thickness at the leading edge 32a and the trailing edge 32b is smaller than the thickness at the middle portion, thus forming an airfoil profile. As a result, the amount of airflow in the axial direction is increased, and at the same time the separation flow of the airflow along the surface of the blade 32 is reduced lowering the wind noises.
The second blades 38 are also preferably configured to form an airfoil profile so that the wind noises attributable to the airflow running along the cascade of the second blades 38 can be reduced. The orientation of the second blades 38 is determined appropriately in consideration of the characteristics of the airflow generated by the rotor vanes and the stator vanes constituted respectively by the first blades 32 to move round with the rotation of the rotor 31 and the second blades 38 fixed to the case 42.
The present invention has been explained with reference to the exemplary embodiment but is not limited to the configuration described above. For example, the color wheel unit of the present invention may incorporate a color wheel assembly in which a color wheel fixedly attached to the rotary shaft of the rotor 31 is, as described in the explanation of the conventional projection display device shown in
Also, the first blades 32 provided at the outer circumferential surface of the rotor 31 are formed integrally with the rotor 31 in the embodiment but may alternatively be produced discretely are fixedly attached to the rotor 31 by an appropriate fixing means or method, for example such that the first blades 32 are engaged in holes or slits formed in the rotor 31, or it may be arranged such that a mounting ring provided integrally with the first blades 32 is engagingly attached to the rotor 31. The alternative arrangements allow the first blades 32 to be made of a resin material, but a metallic material is preferable in view of radiation performance.
In the same way, the radiation fins 37 provided at the outer surface of the case 42 and the second blades 38 provided at the inner surface of the case 42 may be produced separately from the case 42 and fixedly attached to the case 42 by an appropriate means or method.
Further, the first and second blades 32 and 38 are not limited in number, size, shape, orientation angle and position to the configuration of the embodiment described with reference to
In addition, the first blades 32 and/or the second blades 38 may be arranged in multiple arrays. For example, the first blades 32 may be arranged in two arrays with respect to the axial direction, and the second blades 38 may be arranged in one array between the two arrays of the first blades 32.
And, in the embodiment described above, the first and second blades 32 and 38 are configured and arranged to generate an airflow for which the openings 40 formed at the annular rear wall 36a of the case 42 function as air inlets while the openings 41 formed at the circular bottom wall 36b of the case 42 function as air outlets, but the first and second blades 32 and 38 may alternatively be configured and arranged to generate an airflow for which the openings 40 function as air outlets and the openings 41 function as air inlets.
Number | Date | Country | Kind |
---|---|---|---|
2006-230359 | Aug 2006 | JP | national |