a) is a schematic enlargement of the signal portion of the embodiment of
Since over 90% of somatic cells are WBC or leukocytes, the proposed method will directly determine the somatic cell count, yielding quantitative results of individual milk at the cow-side. The proposed analytical system will use an inexpensive photometer and liquid reagents for detection, and will produce accurate quantitative SCC measurements in approximately one minute per assay.
All somatic cells or leukocytes have an enzyme called esterase on their cell wall. The role of the polymorphonuclear leucocytes esterase is to convert acetates to phenols. Over the years, urine test-strips have been used to detect the presence infection by indicating the presence of leukocytes in the urine. However, due to the interferences in sample matrixes such as blood and milk, no field test for leukocytes was available until PortaScience published a new technology in 2004. The novel SCC milk test was based on a solid phase test format, and a new dye substrate, 3-(N-tosyl-L-alaninyloxy)-indol (Taloxin) (U.S. Pat. No. 6,709,868), which is very sensitive to esterase, yielding a strong blue color in the presence of esterase. The enzyme catalyses the hydrolysis of dye-substrate, and forms an indigo blue colored dye as the reaction product. Many other colorless chromogenic esters known in the art may be cleaved by the same enzymatic hydrolysis (U.S. Pat. Nos. 4,278,763; 4,637,979; 4,657,855; 4,716,236; 4,806,423).
The concentration of leukocytes and WBC in milk (SCC) is proportional to the enzyme esterase presence, which is proportional to the end color intensity of the indigo dye. This enzymatic reaction has been commercialized successfully for semi-quantitative measurement of leukocytes in urine (U.S. Pat. No. 4,278,763), and recently a quantitative solid phase cow-side test—the PortaSCC milk test—has also been commercialized (U.S. Pat. No. 6,709,868). Potentially this method is an excellent candidate for the development of an in-line SCC test. However, because of the solubility of the dye substrate and the interferences in the milk sample, no liquid reagent using this principle was ever reported for an in-line application. It was surprising, therefore, to find that we have identified a new surfactant and buffer system that accelerates the reaction and reduced interferences, allowing for a rapid detection of SCC (<90 seconds) in liquid phase. We also found that a simple LED/silicon detector optical system was able to measure the resulting color changes quantitatively, allowing for the first time a simple and inexpensive in-line SCC measurement system to be constructed.
The active reagent of the invention consists of a single colorimetric system that contains a dye substrate and buffer (the preferred embodiment) or two part colorimetric system that contains a dye substrate component and a separate buffer component. The preferred dye substrate used in the reagent system is a member of the indoxyl ester family, such as 3-acetyl indoxyl and 3-(N-tosyl-L-alanyloxy)-indole. However, any known substrate that can be hydrolyzed by the esterase on white blood cells to form a colored dye can be use. The buffer works best at a pH of greater than 9.0, but can be functional between pH 7.0-11.0 and at concentrations between 0.01 M to 2 M. A representative and preferred buffer is Tris(hydroxymethyl)aminomethane, commonly referred to as “Tris”. The dye substrate is dissolved in low molecular weight alcohols such as methanol, ethanol, or isopropanol. A surfactant such as the non-ionic surfactant Triton×100 helps to disperse the cell components in the assay mixture, and many other non-ionic, anionic, or cationic surfactants are suitable for this purpose.
The in-line analyzer of the invention consists of a fluid control system, an optical detection system, and related electronics and display, see
The reagent component of the invention consists of the following formulation:
Ten fresh milk samples were collected for this study. One hundred microliters of the reagent is mixed with 100 μL of fresh milk sample, and the color changes measured by a Minolta CR-321 colorimeter in Hunter's units in 180 seconds were plotted against the Deleval's Direct cell counter (DCC) method. The data is summarized in Table 1, and the correlation shown in
The milk sample from a milking line is introduced to the in-line instrument module by a pump and a series of valves, where it is mixed with the reagent. After a fixed incubation period, the mixture is moved to an optical flow cell, where the color intensity is read. The schematic of the in-line instrument is shown in
The in-line protocol using a flow cell is summarized as follows:
The optical detection module of the in-line SCC instrument was modified using the same flow cell and fluidic controls but the optical detector was changed. The optical signal change was measured by a reflectance mode rather by the transmittance mode. As shown in