The invention relates to a colour change material, a device or article composed of colour change material, a method of manufacturing a colour change material, and to a master for use in a method of manufacturing a colour change material.
For 5 years, we have been exploring the use of self-assembly and templating to create metal nanostructures which have strong structural colour resonances [1]. These depend on light trapped near the surface of 3D sculpted noble metals on size scales from 100 nm to 10 μm. We have also been developing self-assembled plastic photonic crystals for structural colour applications. [2] Also, we have been developing spherical microcavities like these to demonstrate resonant trapping of specific colours of light [3].
The present invention combines these three ideas together to make metal structures embedded in elastic films, whose colour changes when stretched.
The invention relates in one aspect to a colour change material comprising a stretchable substrate having an assembly of voids shaped and dimensioned to reflect or absorb light of particular colours.
The voids may be coated with a metallic film. The voids and their metallic film coatings preferably support localised surface plasmons. A membrane layer is advantageously provided with a reflective coating that forms a photon or plasmon resonator with the metallic film enclosing the voids. The assembly of voids has a thickness of less than 10 or 20 μm in examples of the invention. The material can be deployed to give colour effects dependant on the degree of stretching or deformation by any external stimulus (e.g. pressure, magnetic, electrical or optical fields), for example as a surface covering of an object.
The invention further relates to a device composed of the colour change material specified above having a membrane layer, the device further comprising a voltage source connected to the material to modulate the photon or plasmon resonator by deformation of the substrate and/or the membrane layer.
The invention also relates to a method of manufacturing a colour change material, comprising: provide a master having a surface bearing an inverse void structure for forming an assembly of voids shaped and dimensioned to reflect or absorb light of particular colours; applying the master to a stretchable substrate or liquid precursor thereof; and separating the master from the stretchable substrate.
Additionally, the method may further comprise coating the voids with a metallic film, and optionally also adding a membrane layer with a reflective coating to enclose the voids and form a photon or plasmon resonator with the metallic film.
The invention also relates to a master for use in the method of manufacturing specified above.
a shows the master used for fabricating the flexible film which comprises the template of a single layer of close packed silica glass spheres arranged on a glass substrate, wherein a conducting metal substrate is formed by a metal layer which buries the lower halves of the glass spheres, leaving hemispheres of the glass spheres standing proud of the metal layer.
b shows an elastomeric precursor layer coated on the master illustrated in
d shows a flexible film made by coating the plastic film of
a shows a variant by which the metal film is only provided on the top layer, leaving an array of encapsulated metal triangles which nearly touch.
b shows the device of
c shows a further variant having an additional flat top film with a noble metal coating.
a illustrates in plan view an array of encapsulated metal triangles which nearly touch.
b illustrates in plan view a uniaxially stretched version of
c illustrates adjacent metal triangles in plan view.
a shows the structure of
b is similar to
a is a scanning electron micrograph of an example film as illustrated in
b shows reflectivity R of the film of
c shows the shift of the main plasmon mode wavelength λ in nm with strain S in percent.
For 5 years, we have been exploring the use of self-assembly and templating to create metal nanostructures which have strong structural colour resonances (
The basic concept is shown in
Electromagnetic fields in the form of plasmon exist on such surfaces. In the 3D structured films, these produce strong optical resonances [1]. The resonance are sensitive to the size and shape of the nanostructures. Hence by using a thin layer of a ductile metal inside elastomers, the optical resonances can be tuned by stretching the film. A variant might have the metal on just the top layer, leaving for instance an array of encapsulated metal triangles which nearly touch, and whose separation is controlled by the strain, thus changing their colour (
Simple applications for such tuneable structural colour would be coating of injection moulded artefacts, such as mobile phone covers. The iridescent appearance would be further highlighted by colour changes wherever the film has been stretched. Similarly car bodies could be coated with swirling patterns of iridescent skin.
The next simple application would be in the form of flexible films whose colour changes with stretching, such as wall and facia decoration, loudspeaker coatings, architectural tent coverings. Another realisation might be as part of clothing, with the wearer's movement changing the strain, and hence the local colour.
Further developments might be the addition of a flat top film (
Sensors: all of the above effects could be used as optical based sensors, for instance of pressure, temperature, electrical fields and frequencies. Possibly by the loading-induced change in frequencies of mechanical vibrations, they can be used to sense attached layers (e.g. molecules, thickness sensors).
A further refined use a sensor is in surface-enhanced Raman scattering (SERS). Our prior art uses metal nanovoids as a substrate which supports plasmons that act as antennae to feed light into molecules efficiently. This increases the SERS signal of molecules close to the metal surface by a factor of million to billion-fold, allowing sensitive molecular identification. One difficulty is that each nano-structured substrate has to be tuned to the source laser and molecule used. By having a nano-substrate (e.g.
Other geometries for the thin film architecture could also be envisaged; with possible improvements in optical resonance for a given strain. For instance, an array of holes in a thin metal film sandwiched between elastomers. Optical resonance could also be read out through crossed-polarisers, so very sensitive to induced birefringence.
The advantages of the invention include: low cost, mass producible, wide range of markets, thin film, integratable into standard plastics process, and can be made very sensitive to strain.
a is a scanning electron micrograph of an example film as illustrated in
b shows reflectivity R of the film of
c shows the shift of the main plasmon mode wavelength λ in nm with strain S in percent, thereby illustrating how the mode wavelength tunes with stretch.
These could be also used for higher technology applications, such as tuneable filters in lasers, light emitting diodes, fibre-based communications systems etc. Also in controllable micro-optics devices, such as modulators, array focussing, and printing.
Number | Date | Country | Kind |
---|---|---|---|
0709846.0 | May 2007 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2008/001751 | 5/22/2008 | WO | 00 | 5/24/2010 |