The invention relates to a technique of forming color images and more particularly to a document including a holographic structure forming an arrangement of pixels from which a color image is formed.
The identity market today requires increasingly secure identity documents (also called identity documents). These documents must be easily authenticable and difficult to counterfeit (if possible tamper-proof). This market concerns a wide variety of documents, such as identity cards, passports, access badges, driving licenses, etc., which can be presented in different formats (cards, booklets, etc.).
Various printing techniques have been developed over time to achieve color printings. The production particularly of identity documents such as those mentioned above requires the production of the color images in a secure manner in order to limit the risks of falsification by malicious individuals. The manufacture of such documents, particularly in the identity image of the bearer, needs to be sufficiently complex to make the reproduction or falsification by an unauthorized individual difficult.
Thus, a known solution consists in printing on a medium a matrix of pixels composed of color sub-pixels and forming grayscales by laser carbonization in a laserable layer located facing the matrix of pixels, so as to reveal a customized color image which is difficult to falsify or reproduce. Exemplary embodiments of this technique are described for example in documents EP 2 580 065 B1 (dated Aug. 6, 2014) and EP 2 681 053 B1 (dated Apr. 8, 2015).
Although this known technique offers good results, improvements are still possible in terms in particular of the quality of the visual rendering of the thus formed image. From this image forming technique, it is indeed difficult to achieve high levels of color saturation. In other words, the color gamut (ability to reproduce a range of colors) of this known technique can be limited, which may be problematic in some use cases. This results in particular from the fact that the color sub-pixels are formed by a conventional printing method, by offset-type printing for example, which does not allow forming sufficiently rectilinear and continuous lines of sub-pixels, which generates inhomogeneities during the printing of the sub-pixels (interruptions in the lines of pixels, irregular contours, etc.) and a degraded colorimetric rendering.
The current printing techniques further offer a limited positioning accuracy due to the accuracy in the printing machines, which also reduces the quality of the final image due to mispositioning of the pixels and sub-pixels relative to each other (problems of overlapping of the sub-pixels, misalignments . . . ) or due to the presence of a tolerance interval devoid of printing between the sub-pixels.
As illustrated in
There is now a need to securely form customized color images, in particular in documents such as identity documents or the like. There is particularly a need to allow flexible and secure customization of color images, so that the thus produced image is difficult to falsify or reproduce and can be easily authenticated.
Furthermore, no solution capable of offering an appropriate level of security and flexibility today allows obtaining a good level of brightness of the image as well as a sufficient color gamut, particularly to obtain the shades of color necessary for the formation of some high-quality color images, for example when image areas need to have a highly saturated level in a given color.
To this end, the invention concerns a secure document comprising:
The invention advantageously allows creating color shades so as to form a secure color image by the interaction between the color modulation means and the arrangement of pixels formed by the holographic layer. The color image is therefore formed by the combination of the color modulation means and of the arrangement of pixels located oppositely. Without the addition of the color modulation means to orient or judiciously select the passage of the incident light, the pixels only form a blank arrangement insofar as this assembly is devoid of the information characterizing the color image. It is the color modulation means that are configured, depending on the chosen arrangement of sub-pixels, to customize the visual appearance of the pixels and thus reveal the final color image.
The present invention allows producing color images with a good image quality while being secure and therefore resistant to falsifications and fraudulent reproductions.
According to one particular embodiment, each sub-pixel in the arrangement of pixels is formed by a respective holographic grating configured to generate by diffraction a corresponding color of said sub-pixel.
According to one particular embodiment, each pixel of said arrangement of pixels forms an identical pattern of color sub-pixels.
According to one particular embodiment, each pixel of said arrangement of pixels is configured such that each sub-pixel has a unique color in said pixel.
According to one particular embodiment, the arrangement of pixels is configured such that the sub-pixels are evenly distributed on or in a substrate.
According to one particular embodiment, the arrangement of pixels forms contiguous lines of sub-pixels.
According to one particular embodiment, said regions destroyed in the holographic structure correspond to areas destroyed by laser ablation of the holographic gratings corresponding to all or part of the sub-pixels in the arrangement of pixels.
According to one particular embodiment, said destroyed regions comprise sub-pixels whose corresponding holographic grating is partially destroyed by laser micro-ablation.
According to one particular embodiment, said masking means forming part of the color modulation means comprise at least one among:
According to one particular embodiment, said amplification means forming part of the color modulation means comprise at least one among:
According to one particular embodiment, each lens of the array of lenses is positioned, relative to an associated pixel located oppositely, to focus or diverge an incident light on at least one of the sub-pixels of said associated pixel so as to modify the contribution of the respective colors of the sub-pixels of the associated pixel, in a region of the customized color image generated through said lens, relative to the pattern intrinsically formed by the associated pixel independently of said lens.
According to one particular embodiment, the document further comprises a transparent laserable layer, called fourth layer, facing the first layer, said fourth layer being at least partially carbonized by laser radiation so as to comprise locally opacified regions facing sub-pixels of the arrangement of pixels to produce grayscales in the customized color image.
According to one particular embodiment, the first layer comprises:
The invention also relates to a corresponding manufacturing method. More particularly, the invention relates to a method for manufacturing a document, comprising the following steps:
According to one particular embodiment, said formation of the color modulation means comprises at least one among:
As indicated above, the invention generally relates to the formation of a color image and concerns particularly a secure document including such an image.
The invention proposes to form a color image in a secure manner from a holographic layer including a hologram forming an arrangement of pixels, these pixels themselves including a plurality of color sub-pixels, and from color modulation means which are configured to select the color of the pixels in the holographic layer by modifying the relative colorimetric contribution of the sub-pixels relative to each other in part at least of the pixels. As described in more detail below, various embodiments are possible. Particularly, the aforementioned color modulation means can take various forms as explained below with reference to the figures.
The color modulation means alter the colorimetric contribution (or weight) of sub-pixels relative to the neighboring sub-pixels in the corresponding pixels, so as to reveal a customized color image from the combination of the arrangement of pixels and said modulation means.
The invention also concerns a method for forming such a color image.
Other aspects and advantages of the present invention will emerge from the exemplary embodiments described below with reference to the drawings mentioned above.
In the remainder of this document, examples of implementations of the invention are described in the case of a document including a color image according to the principle of the invention. This document can be any document, called secure document, of the booklet or card type or the like. The invention finds particular applications in the formation of identity images in identity documents such as: identity cards, debit cards, passports, driving licenses, secure entry badges etc. The invention also applies to security documents (banknotes, notarized documents, official certificates . . . ) including at least one color image.
In general, the image according to the invention can be formed on any suitable medium.
Likewise, the exemplary embodiments described below aim to form an identity image. It is however understood that the considered color image can be any color image. This may for example be an image representing the portrait of the holder of the concerned document, other implementations being however possible.
Unless otherwise indicated, the elements common or similar to several figures bear the same reference signs and have identical or similar characteristics, so that these common elements are generally not described again for the sake of simplicity.
As illustrated in this figure, the color image IG comprises a holographic layer (also called first layer) 12 coupled to, or including, color modulation means 10. The holographic layer 12 includes a holographic structure forming an arrangement 29 of pixels 30, each of the pixels including a plurality of sub-pixels 32 of distinct colors.
As described below, the holographic layer 12 intrinsically forms an arrangement 29 of pixels which is blank, in the sense that the pixels 30 do not include the information defining the pattern of the image IG desired to be formed. It is by combining this arrangement 29 of pixels with the color modulation means 10 that a pattern of a customized color image is revealed. To do so, the color modulation means 10 are configured to select the color of the pixels 30 by modifying the colorimetric contribution of the sub-pixels 32 relative to each other in part at least of the pixels 30 formed by the holographic layer 12, so as to reveal a customized color image IG from the arrangement 29 of pixels combined with the color modulation means 10.
In other words, the color modulation means 10 are configured to cause a selective passage (or modified, by masking, amplification or the like) of light from the holographic layer 12 towards an observation point external to the image IG. These modulation means 10 thus generate color shades in the pixels 30 by modifying the contribution of some sub-pixels in the visual rendering of the final image IG.
The color modulation means 10 allow particularly modulating the passage of light so that, for part at least of the pixels 30, at least one sub-pixel has an increased or decreased contribution compared to that of at least one other sub-pixel neighboring the concerned pixel.
As already indicated, the color image IG can be formed on any medium. As represented in
In the following exemplary embodiments, it is assumed that the secure document 20 is an identity document, for example in the form of a card, such as an identity card, an identification badge or the like. In these examples, the image IG is a color image whose pattern corresponds to the portrait of the document holder. As already indicated, however, other examples are possible.
In general, the holographic layer 12 has a holographic structure so as to produce the arrangement 29 of pixels in the form of a hologram by diffraction, refraction, and/or reflection of an incident light. The principle of the hologram is well known to those skilled in the art. Some elements are recalled below for reference. Exemplary embodiments of holographic structures are described for example in document EP 2 567 270 B1.
The holographic layer 12 includes a layer (or sub-layer) 22 as well as reliefs (or relief structures) 24, containing three-dimensional information, which are formed from the layer 22 serving as a medium. These reliefs 24 form protruding portions (also called “mountains”) separated by recesses (also called “valleys”).
The holographic layer 22 further includes a layer (or sub-layer) 28, called high-refractive index layer, which has a refractive index n2 greater than the refractive index n1 of the reliefs 24 (it is assumed here that the reliefs 24 form an integral part of the layer 22 serving as a medium, so that the reliefs 24 and the layer 22 have the same refractive index n1). This layer 28, which can be a metallic and/or dielectric layer, covers the reliefs 24 of the holographic layer 12. As understood by those skilled in the art, the reliefs 24, in combination with the layer 28, form a holographic structure 27 which produces a hologram (a holographic effect).
The reliefs 24 of the holographic structure 27 can be formed for example by embossing of a layer of stamping varnish (included in the layer 22 in this example) in a known manner for making diffractive structures. The stamped surface of the reliefs 24 thus is in form of a periodic array whose depth and period can be respectively on the order of a hundred to a few hundred nanometers for example. This stamped surface is coated with the layer 28, for example by means of vacuum deposition of a transparent dielectric material (with a high optical index) or/and of a metallic material. The holographic effect results from the association of the reliefs 24 and of the layer 28 forming the holographic structure 27.
The holographic layer 12 may optionally comprise other sub-layers (not represented) necessary to maintain the optical characteristics of the hologram and/or allowing ensuring a mechanical and chemical resistance of the assembly.
The high refractive index layer 28 (
In the exemplary embodiments described in this document, the holographic layer 12 is transparent, so that the holographic effect revealing the color image IG is visible by diffraction, reflection and refraction. However, other arrangements can be envisaged in which the holographic layer 12 is opaque so that the color image IG is only visible by reflection of an incident light on the holographic structure 27.
The holographic structure 12 is made by any suitable method known to those skilled in the art.
The reliefs 24 have a refractive index denoted n1, on the order of 1.56 at a wavelength λ=656 nm for example.
In the example considered here (
The layer 22 can be a thermoformable layer thus allowing the reliefs 24 of the holographic structure 27 to be formed by embossing on the layer 22 serving as a medium. As a variant, the reliefs 24 of the holographic structure 27 can be made using an ultraviolet (UV) crosslinking technique. As these manufacturing techniques are known to those skilled in the art, they are not described in more detail for the sake of simplicity.
Still referring to
An observer OB can thus visualize according to a particular direction of observation the arrangement 29 of pixels from a light refracted, reflected and/or diffracted from the holographic structure 27 of the holographic layer 12.
As illustrated below, the arrangement 29 of pixels can take various forms.
In the example envisaged here, the pixels 30 thus include 3 sub-pixels of distinct colors, other examples being however possible. It is assumed that each sub-pixel 32 is monochromatic. Each holographic grating is configured to generate a color in each sub-pixel 32 corresponding to a predetermined observation angle, this color being modified at a different observation angle. It is for example assumed that the sub-pixels 32 of each pixel 30 respectively have a distinct fundamental color (for example green/red/blue or cyan/yellow/magenta) at a predetermined observation angle.
As represented in
Thus, in the example considered where each pixel 30 is composed of 4 sub-pixels 32, the theoretical maximum saturation capacity S in one of the colors of the sub-pixels in a same pixel can be stated in the following way:
By way of example, it can be considered that l=60 μm and p=10 μm which leads to a theoretical maximum saturation capacity S=0.21.
It is possible to form the holographic gratings forming the sub-pixels 32 so that the pitch p tends towards zero, which allows increasing the theoretical maximum saturation capacity in a color by one sub-pixel (S then tending towards 0.25).
According to one particular example, the pitch is set to p=0, which allows reaching a theoretical maximum saturation capacity S equal to 0.25. In this case, the lines 34 of sub-pixels as represented in
The invention thus allows forming lines of sub-pixels which are contiguous, that is to say adjacent to each other without it being necessary to leave separating white areas between each line, or possibly by keeping separating white areas but of limited dimension between the lines of sub-pixels (with a small pitch p). As will appear more clearly in the light of the following exemplary embodiments, this particular configuration of the holographic gratings allows significantly improving the quality of the final image IG (better color saturation). This is possible in particular because the formation of holographic structures allows achieving better accuracy in the positioning of the sub-pixels and better homogeneity than by conventional printing of the sub-pixels (by offset or the like).
As already indicated, the arrangement 29 of pixels 30 formed by the holographic layer 12 (
In general, the arrangement 29 of pixels can be configured so that the sub-pixels 32 are evenly distributed in the holographic layer 12. The sub-pixels 32 can for example form parallel lines of sub-pixels or another hexagon-shaped (Bayer type) array, other examples being possible.
The sub-pixels 32 can for example form an orthogonal matrix.
The pixels 30 can be evenly distributed in the arrangement 29 so that the same pattern of sub-pixels 32 is periodically repeated in the holographic layer 12.
Furthermore, each pixel 30 of the arrangement 29 of pixels can be configured so that each sub-pixel 32 has a unique color in said considered pixel. According to one particular example, each pixel 32 in the arrangement 29 of pixels forms an identical pattern of color sub-pixels.
Particular examples of arrangements (or tiling) 29 of pixels that can be implemented in the secure document 20 (
According to a first example represented in
For each of the considered arrangements of pixels, it is possible to adapt the shape and the dimensions of each pixel 30 and also the dimensions of the present separating white areas, where appropriate, between the sub-pixels, so as to achieve the desired maximum color saturation level and the desired brightness level.
As already described, the color modulation means 10 comprised in the image IG (
Examples of particular implementation of the secure document 20, comprising a color image IG as described previously with reference to
More particularly, a first particular embodiment of the secure document 2 (
The holographic layer 12 includes regions RG1 of the holographic structure 27, called destroyed regions, which are locally destroyed by laser. This selective destruction of the holographic structure 27 leads to a partial or total destruction of one or a plurality of sub-pixels 32 in part at least of the pixels 30, which causes a modification of the holographic effect in the concerned regions. Thus, the holographic effect is eliminated, or decreased, in the destroyed regions of the holographic structure 27, which decreases (or totally eliminates) the relative color contribution of one or a plurality of sub-pixels 32, located facing the destroyed regions RG1, relative to at least one other neighboring sub-pixel 32 of the concerned pixels 30. In other words, this selective destruction of the holographic structure 27 leads to a modification of the colorimetric weight of some sub-pixels 32, in the final color image denoted here IG1, relative to at least one other sub-pixel 32 neighboring the concerned pixels 30.
These destroyed regions RG1 thus collectively form color modulation means 10 which are configured, in combination with the holographic layer 12, to reveal the customized color image IG1 (
The laser destruction causes a local elimination (or deformation) of the geometry of the holographic structure 27, and more particularly of the reliefs 24 and/or of the layer 28 covering said reliefs. These local destructions result in a modification of the behavior of light (i.e. the reflection, diffraction and/or refraction of light) in the corresponding pixels and sub-pixels.
According to one particular example, these destroyed regions RG1 in the holographic structure 27 correspond to areas destroyed by laser ablation in the holographic gratings corresponding to all or part of the sub-pixels 32 in the arrangement 29 of pixels. Thus, it is possible to perform a partial laser ablation of a sub-pixel 32, as illustrated by way of example in
The laser ablation (
A second particular embodiment of the secure document 2 (
A pattern 50 is further printed facing the holographic structure 27, that is to say facing the arrangement 29 of pixels 30, so as to locally mask all or part of the sub-pixels 32. This pattern 50 is formed from an ink (or an equivalent material) which allows at least partially masking some regions of the holographic structure 27.
The addition of this printed pattern 50 in the overall structure allows decreasing (even totally eliminating) the relative color contribution of one or a plurality of sub-pixels 32, located facing the printed pattern 50, relative to at least one other neighboring sub-pixel 32 in the concerned pixels 30. In other words, this selective masking of the holographic structure 27 leads to a modification of the colorimetric weight of some sub-pixels 32, in the final color image denoted here IG2, relative to at least one other sub-pixel 32 neighboring the concerned pixels 30.
This printed pattern 50 thus forms color modulation means 10 which are configured, in combination with the holographic layer 12, to reveal the customized color image IG2 (
The ink used to form this printed pattern 50 can be black, white or any other color, depending on the desired masking effect, so as to modulate the color of the pixels 30 in the arrangement 29 of pixels.
It is particularly possible to perform a printing, of the inkjet type for example, so as to mask only a portion of a sub-pixel 32 (even the entire sub-pixel 32), which allows decreasing the relative color contribution of said sub-pixel 32 in the concerned pixel 30.
In the example represented in
A third particular embodiment of the secure document 2 (
In this example, a transparent layer 60 sensitive to the laser, called laserable layer, is also disposed at the interface between the holographic layer 12 and the layer 40. This laserable layer 60 is able to be locally opacified by means of a laser radiation LS2 in order to at least partially block the passage of light, which thus allows at least partially masking one or a plurality of sub-pixels.
As illustrated, the laserable layer 40 thus comprises areas (or volumes) 62, called opaque areas, locally opacified by a laser radiation LS2, these opaque areas being positioned facing the holographic structure 27 so as to locally mask all or part of the sub-pixels 32. More particularly, these opaque areas 62 constitute laser points, of variable shapes and opacities, which are formed by local carbonization of the laserable layer 60. By adjusting particularly the power of the laser LS2 and/or over the duration of the impact, the desired opaque areas 62 can be formed. Thus, the degree of blackening is a function of the energy applied by the laser radiation LS2.
The opaque (non-reflective) areas 60 are formed facing some sub-pixels 32 so as to produce grayscales in the final color image denoted here IG3.
The addition of these opaque areas 62 allows decreasing (even totally eliminating) the relative color contribution of one or a plurality of sub-pixels 32, located facing each other, relative to at least one other sub-pixel 32 neighboring the concerned pixels 30. In other words, this selective masking of the holographic structure 27 leads to a modification of the colorimetric weight of some sub-pixels 32, in the final color image IG1, relative to at least one other sub-pixel 32 neighboring the concerned pixels 30.
These opaque areas 62 thus collectively form color modulation means 10 which are configured, in combination with the holographic layer 12, to reveal the customized color image IG3 (
In the example represented in
The laserable materials which can be used to form the laserable layer(s) described in this document are, by way of non-limiting examples, polycarbonates, some treated polyvinyl chlorides, treated acrylonitrile-butadiene-styrenes or treated poly-ethylene terephthalates.
A fourth particular embodiment of the secure document 2 (
In this example, a lenticular array 68 including a plurality of lenses LN is disposed facing the arrangement 29 of pixels formed by the holographic layer 12, so as to generate the customized color image—denoted here IG4—by focusing or divergence of incident light through the lenses LN on at least part of the sub-pixels 32.
The lenticular array 68 is formed in this example on the surface of the upper layer 42a, although other implementations are possible. The lenses LN can be formed for example by projection of a laser radiation LS3. It is for example possible to use a CO2-type laser radiation or the like to create surface deformations defining the lenses LN of the lenticular array 68. The layer 42a is itself laminated on the holographic layer 12, or optionally on an intermediate layer located between the layer 42a and holographic layer 12.
Each lens can be positioned (or configured), relative to a pixel 30 (called associated pixel) located oppositely, to focus or diverge the incident light on at least one of the sub-pixels 32 of said associated pixel so as to modify the contribution of the respective colors of the sub-pixels of the associated pixel, in a region of the color image IG4 generated through the lens, relative to the pattern intrinsically formed by the associated pixel 30 independently of (or without) said lens.
In other words, each lens LN can be positioned (or configured), relative to an associated pixel 30 located oppositely, to focus or diverge the incident light on at least one of the sub-pixels 32 of said associated pixel so as to modify the respective relative color contribution of at least one sub-pixel of the associated pixel, in a region of the color image corresponding to said pixel, relative to the respective color contribution of the other sub-pixel(s) neighboring said associated pixel.
The lenses LN thus allow amplifying the brightness of some sub-pixels 32 and decreasing the brightness of other sub-pixels 32, which produces color shades making it possible to reveal the final color image IG4 by the interaction between the lenticular array 68 and the arrangement 29 of pixels formed by the holographic structure 27. From the same blank arrangement 29 of pixels 30, it is thus possible to adapt the configuration of the lenses LN so as to generate various color images IG4.
The lenticular array 68 thus forms color modulation means 10 which are configured, in combination with the holographic layer 12, to reveal the customized color image IG4 (
According to one particular example, the lenses LN (or part at least thereof) are convergent lenses configured to focus the incident light received so as to accentuate the relative color contribution of at least one sub-pixel 32 of the associated pixel (pixel located oppositely), in the corresponding region of the color image IG4 generated through said lens, relative to the respective color contribution of each other sub-pixel 32 neighboring said associated pixel 30.
According to one particular example, the lenses LN are configured to focus light on a single sub-pixel 32 of the associated pixel 30 so as to mask the color of each other sub-pixel 32 neighboring the associated pixel 30 in the corresponding region of the color image IG4 generated through said lens.
It is further possible to configure lenses LN in the lenticular array 68 so that they focus the light on sub-pixels 32 of the same color in the pixels 30 of a given region of the holographic structure 27, so that a monochrome region appears in the customized color image IG4.
As a variant, it is possible to configure lenses LN in the lenticular array 68 so that they focus the light on at least two sub-pixels 32 neighboring the associated pixel 30, thus making a hybrid color resulting from a combination of the colors of said at least two neighboring sub-pixels 32 appear in a corresponding region of the color image IG4.
According to one particular example, part at least of the divergent lenses LN are configured to diverge an incident light received by the lens so as to reduce the color contribution of at least one sub-pixel 32 of the associated pixel 30, in the corresponding region of the color image IG4 generated through said lens, relative to the respective color contribution of the other sub-pixel(s) 32 neighboring the associated pixel 30.
The arrangements above are described only by way of example, other implementations of the lenticular array 68 being possible. In the example represented in
A fifth particular embodiment of the secure document 2 (
The color image denoted here IG5 is formed by the combination of the holographic layer 12 already described above and of an optical amplification device 74 comprising a transparent laserable layer and a transparent separating layer 70 disposed between the holographic layer 12 and the transparent laserable layer. The transparent laserable layer and the transparent separating layer 70 are located under the holographic layer 12 that is to say on the side of the holographic structure 27 formed by the reliefs 24 and the high refractive index layer 28. As explained below, the transparent separating layer 70 allows maintaining a gap noted e1 between the holographic layer 12 and the transparent laserable layer.
In the example considered here, the transparent laserable layer mentioned above is the layer 40 located under the holographic layer 12, although other arrangements are possible.
Still in this example, the laserable layer 40 comprises areas locally opacified 72 by means of laser radiation LS4, facing the holographic layer 12 so as to cause an amplification of the brightness of sub-pixels 32 in the arrangement 30 of pixels in regions of the final color image IG5 corresponding to the opacified areas 72. The technique of forming the opaque areas 72 is identical to the technique described above with reference to
The transparent separating layer 70 allows maintaining a gap e1 between the holographic structure 27 and the opaque areas 72. The formation of the opaque areas 72 in the laserable layer 40, at a distance from the holographic structure 27, allows generating a local amplification phenomenon of the brightness of the sub-pixels 32 located facing said opaque areas 72. To obtain this optical amplification effect, it is necessary that the thickness e1 of the transparent separating layer 70 is greater than or equal to half of the longest wavelength—denoted λmax—in the visible spectrum. In other words, it is necessary that:
e1≥½×λmax=375 nm [Math. 2]
where λmax=750 nm
According to one particular example, the thickness e1 is between 0.375 μm and 100 μm (bounds included), and preferably between 0.375 μm and 5 μm (bound included).
Each opaque area 72 in the laserable layer 40 is positioned facing at least one sub-pixel 32 so as to amplify its relative colorimetric contribution in the region of the final color image IG5 relative to at least one other sub-pixel 32 neighboring the considered pixel 30.
The optical amplification device 74 thus forms color modulation means 10 which are configured, in combination with the holographic layer 12, to reveal the customized color image IG (
In general, with reference to each of the embodiments described above, it is possible to further generate contrast in the thus obtained color image IG by incorporating into the overall structure a laserable layer, if such a layer is not already present in said structure. This laserable layer can be locally carbonized with laser in an identical manner to what is described above with reference to the laserable layer 60 (
More particularly, the overall structure of the color image may further comprise such a transparent laserable layer facing the holographic layer 12, this laserable layer being at least partially carbonized by laser radiation so as to comprise locally opacified regions facing sub-pixels 32 of the arrangement 29 of pixels to produce grayscales in the customized color image.
In general, the invention advantageously allows creating color shades so as to form a secure color image by the interaction between the color modulation means and the arrangement of pixels formed by the holographic layer. The color image is therefore formed by the combination of the color modulation means and of the arrangement of pixels located oppositely. Without the addition of the color modulation means to orient or judiciously select the passage of the incident light, the pixels only form a blank arrangement insofar as this assembly is devoid of the information characterizing the color image. It is the color modulation means that are configured, depending on the chosen arrangement of sub-pixels, to customize the visual appearance of the pixels and thus reveal the final color image.
The present invention allows producing color images with a good image quality while being secure and therefore resistant to falsifications and fraudulent reproductions.
More particularly, the invention allows obtaining an increased image quality, namely better overall brightness of the final image (more brightness, more vivid colors) and a better color saturation capacity. In other words, the invention allows achieving a high-quality color image with an improved colorimetric gamut compared to a printed image.
The use of a holographic structure to form the arrangement of pixels is advantageous in that this technique offers high positioning accuracy of the thus formed pixels and sub-pixels. This technique allows in particular avoiding overlaps or misalignments between sub-pixels, which improves the overall visual rendering.
As already described with reference to
However, white sub-pixels, possibly of reduced size, can be kept in the arrangement of pixels in order to achieve the desired level of brightness. It is even possible to remove the white sub-pixels because the hologram inherently has high brightness and particularly allows obtaining greater brightness than with printed inks. Thus, it is possible to keep only fundamental color sub-pixels in the arrangement of pixels, which allows obtaining increased color saturation capacity. It is for example possible to form the pixels from only 3 sub-pixels (according to a hexagonal pattern for example), which allows achieving a theoretical maximum color saturation of 33% for each fundamental color.
By implementing the principle of the invention, it is possible to easily detect fraud when the image has been falsified or illegally reproduced. Furthermore, this level of complexity and security of the image achieved thanks to the invention does not happen at the expense of the quality of the visual rendering of the image.
The color modulation means according to the principle of the invention can take various forms: (1) destroyed regions of the holographic structure, (2) masking means or (3) amplification means, as described previously. The color image IG according to the invention may however comprise any combination, or under combination, of at least two among the forms (1), (2) and (3) indicated above (for example (1) and (2), or even (1) and (3), or even (2) and (3)).
A method for manufacturing a color image IG as described above is now described with reference to
During a creation step S2, a holographic structure 27 which forms an arrangement 29 of pixels 30 as described previously is manufactured in a holographic layer 12. Each pixel 30 comprises a plurality of sub-pixels 32 of distinct colors according to one of the already described examples.
The layer 22 (
A layer of adhesive and/or glue (not represented) can also be used to ensure adhesion of the holographic layer 12 on a medium (for example on a layer 42 or 42a already described above).
During a formation step S4, color modulation means 10 are formed as already described above, to select the color of the pixels 30 by modifying the relative colorimetric contribution of the sub-pixels 32 relative to each other in part at least of the pixels 30 so as to reveal a customized color image IG from the arrangement 29 of pixels combined with the color modulation means 10.
As already described, the thus formed color modulation means 10 may comprise at least one among:
Thus, the destroyed regions RG1 represented in
The masking means 50 represented in
The lenticular array 68 represented in
The optical amplification device 74 represented in
It is thus possible to form the color modulation means 10 using a single laser radiation, namely one of LS1, LS2, LS3 and LS4 depending on the type of color modulation means 10 desired to be formed. In other words, the color modulation means 10 can be formed using a single laser radiation among:
According to one particular example, the color modulation means 10 can be formed using two distinct laser radiations at most, among the radiations LS1 and LS4 described above.
According to one particular example, the laser radiations LS2 and LS4 are identical.
The invention thus allows securely generating a high-quality customized color image, from a relatively uncomplicated manufacturing method.
Those skilled in the art will understand that the embodiments and variants described in this document constitute only non-limiting examples of implementation of the invention. Particularly, those skilled in the art may envisage any adaptation or combination among the characteristics and embodiments described above in order to meet a very particular need.
Number | Date | Country | Kind |
---|---|---|---|
19 02066 | Feb 2019 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2020/050262 | 2/13/2020 | WO | 00 |