A block for use in a system of interlocking modular blocks is described. In particular, blocks suitable for forming columns are described.
Columnar structures used for decoration or as support for fence panels, gates or other such structures have required a considerable amount of skill and effort to erect. Conventional systems primarily include mortared masonry blocks. Columns or pillars also have been made from stone, but this requires skilled craftspeople to ensure proper structural completion.
Modular blocks have also been used to build columns or pillars. Such blocks can be installed without special skill. The advantages to such blocks are that they are a convenient size, a consistent size, and installation costs are less because of the lack of dependence on skilled labor. Blocks known in the art use construction adhesive to strengthen connection between layers and may be used with mortar to simulate the appearance of a more conventional block and mortar column.
An important feature of the building blocks is their appearance. The look of weathered natural stone is very appealing for columns and other similar structures. The art provides several methods to produce concrete blocks having an appearance that to varying degrees mimics the look of natural stone. According to one well-known method, blocks are individually formed in a mold and the surfaces are textured by removal of the mold. Additional machine texturing processes can then be applied. The look of smooth cut stone can also be very attractive for columns and other structures. The smooth texture provides a more straight edge, formal, geometric shape for the block and overall structural appearance.
A need in this art remains for blocks that can be used to construct mortarless, sturdy, reinforceable columns that have a desired appearance.
This invention is a system of blocks configured to be compatible with each other in the construction of a columnar structure. Each block has four faces that can either be textured in a manner resulting in an appearance like that of natural stone, or can be smooth to give a more formal appearance. All four faces of the block generally have the same dimensions. The faces of the block also may contain a slot to give the block a more aesthetic appearance by simulating the appearance of multiple blocks.
The blocks are provided with at least one interlocking element that permits a positive connection between courses of the blocks when the interlocking element is received in an overlying block. In one embodiment, the blocks interlock when there is a 90 degree rotation about a vertical axis of each block with each course. The blocks may be placed over a pipe or post-tensioning rod that is anchored into a foundation element in the ground. The core and the interlocking elements may be shaped to accommodate such a pipe and or post-tensioning rod. The blocks can be used to construct a column with a natural stone-like appearance or smooth appearance depending upon which type of block was used. Cores of stacked blocks form a passage through which vertical reinforcement can be used. This building block system is designed to be easy to install and structurally sound.
In this application, “upper” and “lower” refer to the placement of blocks as a column is constructed. The lower or bottom surface of blocks is the surface that faces the ground in a column. The first course of the column is formed by placing one block so that its lower surface is face-down. Subsequent courses are formed by stacking blocks so that an interlocking element or projection from one block fits into an indentation or void of an overlying block. “Top” and “bottom” surfaces are defined as those most conventionally used for these blocks, however, the blocks can be used with tops and bottom reversed.
The blocks of this invention may be made of a rugged, weather resistant material, such as concrete, especially if the columnar structure is constructed outdoors. Other suitable materials include plastic, reinforced fibers, wood, metal and stone. The surface of the blocks may be smooth or may have a roughened appearance, such as that of natural stone. The blocks typically are formed in a mold and various textures can be formed on the surface, as is known in the art.
Each block has four faces which can either be textured in a manner resulting in an appearance like that of natural stone, or can be smooth to give a more formal appearance. All four faces of the block may have the same dimensions. One or more faces of the block optionally may contain one or more slots that will be visible in the columnar structure to give a column of blocks a more aesthetic appearance.
In typical use, the interlocking element extends above the top surface of the block and projects into an indentation in an overlying block. In a preferred embodiment, the indentation is the core; that is, the core extends through the thickness of the block. In one preferred embodiment, two interlocking elements extend above the top surface of the block into the core of the overlying block, thus producing positive interconnection between facing surfaces. In a preferred embodiment, each successive block is rotated by 90 degrees about its vertical axis thus causing the interlocking elements to project into the core of the block above it. The interlocking elements hold the blocks in place and eliminate the need for mortar when constructing the column.
Rotation of each block about its vertical axis also varies the location of the slot, if present, resulting in a more eye-pleasing pattern for the column. Rotation of the blocks as a column is built also serves to produce a straight column. Because block molding processes may result in uneven blocks, stacking the blocks all in the same orientation may cause a column to tilt or lean. This problem is usually solved by shimming the blocks to make them level. With the block system of this invention, shimming is unnecessary.
The blocks can be used to form various types of columns, such as free standing, decorative columns, gate columns, or columns for use with fence panels.
Turning now to the drawings, the blocks of this invention are described.
The surfaces of the block meet to form edges and corners. The corners may be beveled, chamfered or rounded to give a more weathered natural stone-like appearance.
Block 100 has optional slot 118 on each side. The slot is a trough on the side and top surfaces, extending from the bottom surface to the core. The slot results in a desirable appearance of stacked blocks, aids in positioning the block when forming a column, and allows the top surface to receive a bracket so that the block can be attached to a fence segment, as described further below.
Block 100 is provided with core 120 located in the center of the block. Core 120 extends the thickness of the block and is desirable because a core results in reduced weight for the block. The core is also useful when forming a column because vertical reinforcement can be inserted through the vertically aligned cores to lend stability to the columnar structure. For example, concrete grout and rebar, steel pipe, or post-tension rods can be used to fill the core and strengthen the structure.
Core 120 is generally rectilinear, having walls generally parallel to the side surfaces. On opposing inside corners of core 120 are located two interlocking elements 122. These elements extend the thickness of the block, and project above the top surface of the block. They are essentially co-planar or parallel with the bottom surface of the block, that is, the bottom surface of the block is essentially co-planar or contiguous with the bottom surfaces of these elements.
Although neither the interlocking elements nor the core need extend the thickness of the block, typically it is simpler to manufacture the blocks this way. In any event, the interlocking elements extend a distance above the top surface of the block. This distance is sufficient to provide adequate interlocking between blocks when a second block is stacked on a first block.
Block 100 has interlocking elements that are mirror images of each other on a diagonal plane of symmetry through the block. These interlocking elements are positioned to permit the alignment of blocks directly over one another when rotated 90 degrees about the vertical axis of the block. The interlocking elements also help to lock blocks into place, thus adding stability to a column of the blocks. Most preferably, the interlocking elements are shaped so that a pipe or post-tensioning rod can be installed vertically in the center of the block and through the center of the column. That is, as shown in the figures, the portion of the projection facing the center of the core is curvilinear.
It is to be emphasized that it is generally preferred that the blocks be used in the orientation described above, but there is nothing precluding the use of the blocks wherein the projections extend into the core of an underlying block.
Block 200 comprises top or upper surface 212, bottom or lower surface 213, first and second opposed sides 214 and 216, and third and fourth opposed sides 215 and 217. Top surface 212 is spaced apart from opposing lower surface 213, thereby defining a block thickness. Opposed sides 214 and 216 and 215 and 217 have substantially the same surface area. The top and bottom surfaces together with the first, second, third, and fourth sides form a block body.
Core 220 extends the thickness of the block. Core 220 is generally rectilinear, having walls generally parallel to the side surfaces. On opposing inside corners of core 220 are located two interlocking elements or projections 222, which project above the top of the block and are parallel with the bottom of the block. The remaining descriptions of the various features of block 100 apply equally to corresponding features of block 200.
Block 300 comprises top or upper surface 312, bottom or lower surface 313, first and second opposed sides 314 and 316, and third and fourth opposed sides 315 and 317. Top surface 312 is spaced apart from opposing lower surface 313, thereby defining a block thickness. Opposed sides 314 and 316 and 315 and 317 have substantially the same surface area. The top and bottom together with the first, second, third, and fourth sides form a block body. The top edges 334 and 335 of the block are beveled to produce a desired appearance. In addition, the sides meet at beveled corners 333.
Slots 318 are located at a midpoint on two opposing sides of the block, and the slots open onto the top and bottom surfaces of the block. Block 300 has recessed areas 323 on the top surface of the block. Whereas in blocks 100 and 200, the slots (118 and 218, respectively) continue on the top surface of the block, in block 300, instead of the slots, there are recessed areas 323. Recessed areas 323 extend from the sides of the block and open onto the core.
Core 320 extends the thickness of the block. Core 320 is generally rectilinear, having walls generally parallel to the side surfaces. On opposing inside corners of core 320 are located two projections or interlocking elements 322, which project above the top surface of the block. Use of block 300 in the construction of a fence will be described further below. The remaining descriptions of the various features of block 100 apply equally to corresponding features of block 300.
Block 400 comprises top or upper surface 412, bottom or lower surface 413, first and second opposed sides 414 and 416, and third and fourth opposed sides 415 and 417. Top surface 412 is spaced apart from opposing lower surface 413, thereby defining a block thickness. Opposed sides 414 to 417 have substantially the same surface area. Top edges 434 and 435 of the block are beveled and the sides meet at beveled corners 433.
Slots 418 are located at a midpoint on two opposing sides of the blocks and extend from bottom surface 413 to (and through) beveled edge 434. Recessed areas 423 extend from the core toward the beveled top edges but not to the sides of the block. In this way, each side of the block has a desirable appearance for use in any orientation in a column. On the opposite side of the core from each recessed area is projection or interlocking element 422.
Core 420 extends the thickness of the block. Core 420 is generally rectilinear, having walls generally parallel to the side surfaces. On opposing inside corners of core 420 are located two interlocking elements or projections 422, which project above the top surface of the block.
As shown in
The blocks of this invention can be manufactured to any desired dimension; typically, the thickness is about half the width of the block. The width of the block (i.e., the distance between two opposing sides, as measured at a midpoint) typically varies from about 12 inches (30.4 cm) to about 18 inches (45.7 cm). A convenient thickness (i.e., in terms of utility and appearance) is from about 6 inches to about 8 inches (about 15.2 to 20.3 cm). Block dimensions are selected not only to produce a pleasing shape for the desired column, but also to permit ease of handling and installation. Typically, blocks of one thickness are used to construct a column.
The presence of the core serves not only to provide a space for interlocking elements to fit when the blocks are stacked, but it also reduces the weight of the block. It may be desirable to further reduce the weight, to make the blocks easier to handle. This can be done by adding cores in the block. For example, one or more cores can be formed near the corners of the block when the block is molded.
Base 510 is set into the ground to at least 24 inches (61 cm) or to frost depth as determined by local building codes. The first block is set down and each subsequent block is rotated 90 degrees about its vertical axis and stacked upon a lower block. Thus, the interlocking projections on the upper surface of a block below fit into the core of a block above. The presence of slots 118 is decorative, resulting in a pleasing appearance.
Column 500 is shown with a vertically aligned pipe as an optional interior reinforcement. As a practical matter, the pipe is placed into the foundation element (in the ground), and then a form is built around it for base 510. The blocks are stacked over pipe 520. Pipe 520 is preferably made of galvanized steel and has an outer diameter of about 2.375 inches (about 6 cm).
Various ways may be used to attach fence panels to the columns, as illustrated in
Bracket 540 is shown in
Blocks of this invention also may be used with other blocks having interlocking elements, such as those described in commonly assigned, co-pending U.S. application Ser. No. 11/117,640, filed on even date herewith entitled “Columnar Block Fence System,”, which claims the benefit of commonly assigned, co-pending U.S. Provisional application Ser. No. 60/566,590, filed Apr. 29, 2004 entitled “Columnar Block Fence System,” both of which applications are hereby incorporated herein by reference.
Although particular embodiments have been disclosed herein in detail, this has been done for purposes of illustration only, and is not intended to be limiting with respect to the scope of the claims. In particular, it is contemplated that various substitutions, alterations and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. For instance, the choice of materials or variations in the shape or angles at which some of the surfaces intersect are believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments disclosed herein.
This application claims the benefit of provisional application Ser. No. 60/566,628, filed Apr. 29, 2004, the contents of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
314022 | Heard | Mar 1885 | A |
3298668 | Schueren | Jan 1967 | A |
4107894 | Mullins | Aug 1978 | A |
4186540 | Mullins | Feb 1980 | A |
4726567 | Greenberg | Feb 1988 | A |
4887403 | Bonner | Dec 1989 | A |
5575128 | Haener | Nov 1996 | A |
5623797 | Gravier et al. | Apr 1997 | A |
5761861 | Brackett | Jun 1998 | A |
5899040 | Cerrato | May 1999 | A |
5934035 | Rasmussen et al. | Aug 1999 | A |
5938184 | DeSouza | Aug 1999 | A |
6029954 | Murdaca | Feb 2000 | A |
6065265 | Stenekes | May 2000 | A |
6176049 | Crant et al. | Jan 2001 | B1 |
6185888 | Wasson | Feb 2001 | B1 |
6192629 | Akins et al. | Feb 2001 | B1 |
6374556 | Crant et al. | Apr 2002 | B2 |
6398193 | DeSouza | Jun 2002 | B1 |
D467009 | Agee | Dec 2002 | S |
6564524 | Gruita | May 2003 | B1 |
6571521 | Ameigh | Jun 2003 | B1 |
6578338 | Nanayakkara | Jun 2003 | B1 |
7025335 | Zhu | Apr 2006 | B2 |
20030089068 | Ameigh | May 2003 | A1 |
Number | Date | Country |
---|---|---|
296 02 741 | May 1996 | DE |
2592668 | Jul 1987 | FR |
2705712 | Dec 1994 | FR |
Number | Date | Country | |
---|---|---|---|
20050252146 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60566628 | Apr 2004 | US |