1. Field of the Inventions
The present application relates to heating, ventilating and air conditioning air spaces, and more particularly to systems, devices and methods for moving air in a columnar pattern with minimal lateral dispersion that are particularly suitable for penetrating air spaces and air temperature de-stratification.
2. Description of the Related Art
The rise of warmer air and the sinking of colder air creates significant variation in air temperatures between the ceiling and floor of buildings with conventional heating, ventilation and air conditioning systems. Such air temperature stratification is particularly problematic in large spaces with high ceilings such as warehouses, gymnasiums, offices, auditoriums, hangers, commercial buildings, and even residences with cathedral ceilings, and can significantly decrease heating and air conditioning costs. Further, both low and high ceiling rooms can have stagnant or dead air. For standard ceiling heights with duct outlets in the ceiling there is a sharp rise in ceiling temperatures when the heat comes on.
One proposed solution to air temperature stratification is a ceiling fan. Ceiling fans are relatively large rotary fans, with a plurality of blades, mounted near the ceiling. The blades of a ceiling fan have a flat or airfoil shape. The blades have a lift component that pushes air upwards or downwards, depending on the direction of rotation, and a drag component that pushes the air tangentially. The drag component causes tangential or centrifugal flow so that the air being pushed diverges or spreads out. Conventional ceiling fans are generally ineffective as an air de-stratification device in relatively high ceiling rooms because the air pushed by conventional ceiling fans is not maintained in a columnar pattern from the ceiling to the floor, and often disperses or diffuses well above the floor.
Another proposed solution to air temperature stratification is a fan connected to a vertical tube that extends substantially from the ceiling to the floor. The fan may be mounted near the ceiling, near the floor or in between. This type of device may push cooler air up from the floor to the ceiling or warmer air down from the ceiling to the floor. Such devices, when located away from the walls in an open space in a building, interfere with floorspace use and are not aesthetically pleasing. When confined to locations only along the walls of an open space, such devices may not effectively circulate air near the center of the open space. Examples of fans connected to vertical tubes are disclosed in U.S. Pat. No. 3,827,342 to Hughes, and U.S. Pat. No. 3,973,479 to Whiteley.
A device that provides a column of air that has little or no diffusion from the ceiling the floor, without a vertical tube, can effectively provide air de-stratification. U.S. Pat. Nos. 4,473,000 and 4,662,912 to Perkins disclose a device having a housing, with a rotating impeller having blades in the top of the housing and a plurality of interspersed small and large, vertically extending, radial stationary vanes spaced below the impeller having blades in the housing. The device disclosed by Perkins is intended to direct the air in a more clearly defined pattern and reduce dispersion. Perkins, however, does not disclose the importance of a specific, relatively small gap between the impeller blades and the stationary vanes, and the device illustrated creates a vortex and turbulence due to a large gap and centrifugal air flow bouncing off the inner walls of the housing between the blades and vanes. Perkins also discloses a tapering vane section. The tapering vane section increases velocity of the exiting air stream.
A device with a rotary fan that minimizes the rotary component of the air flow while maximizing the axial air flow quantity and velocity can provide a column of air that flows from a high ceiling to a floor in a columnar pattern with minimal lateral dispersion that does not require a physical transporting tube. Such a device can reduce the energy loss by minimizing the rotary component of the air flow, and therefore minimizes turbulence. Such a device can minimize back pressure, since a pressure drop at the outlet of the device will cause expansion, velocity loss and lateral dispersion. The device can have minimum noise and low electric power requirements.
An aspect of at least one of the embodiments disclosed herein includes the realization that columnar air moving devices, or portions of them, can often be bulky and difficult to mold. Such bulky portions inhibit easy modification, removal, and/or adjustment of the columnar air moving device, and can require expensive molding techniques and processes. It would be advantageous to have a columnar air moving device with removable, interchangeable components. In particular, it would be advantageous to have a stator vane section of a columnar air moving device with removable, interchangeable components.
Thus, in accordance with at least one embodiment described herein, a columnar air moving device can comprise a plurality of separate, attachable components which can be assembled and disassembled. The columnar air moving device can comprise modular stator vanes, which direct air in an axial direction away from the device, and which are arranged in a radial pattern within the device. The modular stator vanes can quickly be replaced, removed, and/or adjusted to create various configurations, and can be formed with injection-molding processes.
According to another embodiment, a vane assembly comprises a top member having a cup-like shape and a bottom member having a cup-like shape. A plurality of vane members; each vane member having a top edge, a bottom edge, an outer lateral edge, an inner lateral edge, and an elongated flange extending along the inner lateral edge, the elongated flange having a top end and a bottom end. The plurality of vane members are arranged in a circular pattern around a longitudinally extending axis such that the vane members point in a generally radial direction away from the longitudinal axis with the top ends of the elongated flanges being positioned within the top member and the bottom ends of elongated flanges being positioned within the bottom member.
According to another embodiment, an air moving device comprises a housing having an air inlet at a first end and an air outlet at a second end spaced from the first end with an air flow passage between the first and second end. A rotary fan is mounted in the housing near the air inlet and having an impeller with a diameter and a plurality of blades that produce an air flow with rotary and axial air flow components. A modular stator vane assembly is mounted in the housing. The stator vane assembly comprises a top member, bottom member, and a plurality of modular stator vanes between the top and bottom members and extending between the impeller and air outlet for converting the rotary component of the airflow into laminar and axial air flow in the housing. The air flow exits the air outlet in an axial stream extending beyond the air outlet in a columnar pattern with minimal lateral dispersion.
According to another embodiment, a method of assembling an air moving device comprises assembling a plurality of modular stator vanes within a top and bottom member. Each modular stator vane has a top edge, a bottom edge, an outer lateral edge, an inner lateral edge, and an elongated flange extending along the inner lateral edge, the elongated flange having a top end and a bottom end. A plurality of modular stator vanes are arranged in a circular pattern around a longitudinally extending axis such that the modular stator vanes point in a generally radial direction away from the longitudinal axis with the top ends of the elongated flanges being positioned within the top member and the bottom ends of elongated flanges being positioned within the bottom member. The module stator vanes are mounted within a housing of the air moving device. A rotary fan is mounted in the housing above the modular stator vanes and top and bottom members, and near an air inlet of the housing, the rotary fan having an impeller with a diameter and a plurality of blades that produce an air flow with rotary and axial air flow components.
These and other features and advantages of the present embodiments will become more apparent upon reading the following detailed description and with reference to the accompanying drawings of the embodiments, in which:
With reference to
With continued reference to
As shown in
With continued reference to
The stator assembly 16 can nest in and be separable from the housing 13. In some embodiments, the stator assembly 16 can be attached to the shelf 26, or can rest below the shelf 26. With reference to
The selected size of the gap can generally be proportional to the size of the blades 33 and can further be affected by the speed of the blades 33. The following are examples: For blades 33 with an outside diameter of 6.00″, and radius of 3″ (the radius being measured from a central axis of the hub 32 to a radial tip of the blade 33), at 1800 rpm, the maximum size of the gap can be 1.25″ and the minimum gap can be 0.2″. For blades 33 with a diameter of 8.5″, at 1400 rpm, the maximum size of the gap can be 1.25″, and the minimum gap can be 0.2″ but could be 0.020 for lower rpm's as the size of the gap is rpm dependent. Generally, the maximum size of the gap can be less than one half the diameter of the blades 33.
With reference to
The air moving device 12 can discharge air at a high velocity in a generally axial flow having a columnar pattern with minimal lateral dispersion after exiting the air outlet 28. The cowling 19 extends along a curve toward the inside to reduce turbulence and noise for air flow entering the air inlet 21.
The stator vanes 46 convert the rotary component of the air flow from the blades 33 into laminar and axial air flow in the housing. The leftward curve of the upstream ends 48 of the stator vanes, in the illustrated embodiment, reduces the energy loss in the conversion of the rotary component of the air flow from the blades 33 into laminar and axial air flow in the housing. The small gap between the blades 33 and stator vanes 46 can prevent the generation of turbulence in the air flow in the gap.
With reference to
Each end 24 of the hanger 23 can have a round, inwardly facing hanger end face 96, similar in size to the mounting face 92 on the housing 13. A hanger end aperture 97 extends through the center of the hanger end face 96. A plurality of spaced, radially extending grooves 98, sized to receive the housing ridges 94, can be provided on each hanger end face 96. Bolt 100 extends through the hanger end aperture 97 and threads into an internally threaded cylindrical insert 101, rigidly affixed in housing aperture 93. The angle of the housing 13 can be chosen by selecting a pair of opposed grooves 98 on each hanger end 24 to receive the housing ridges 94. The pivotal arrangement enables the housing to move to a selected angle and is lockable at the selected angle to direct air flow at the selected angle.
With reference to
The air moving device and system herein described can have relatively low electrical power requirement. A typical fan motor is 35 watts at 1600 rpm for a blade diameter of 8.5″ that will effectively move the air from the ceiling to the floor in a room having a ceiling height of 30 ft. Another example is 75 watts with a blade diameter of 8.5″ at 2300 rpm in a room having a ceiling height of 70 ft.
With reference to
With initial reference to
With reference to
In at least some embodiments, the top plate 42 can have the same, or similar, configuration and shape as that of the base plate 44 and, thus, can also comprise a flat circular bottom portion 45 and a circumferential wall 57 that form a cup 43. As will be noted below, on some embodiments, the top plate 42 and bottom plate 44 can be used together to hold ends of stator vanes 46 in place when the stator vane assembly 16 is fully assembled.
With reference to
With reference to
With reference to
As best shown in
In at least some embodiments, the modular stator vanes 46 can be arranged in a different pattern from that shown in
In other embodiments, the relationship between the top and/or base plates 42, 44 and the vanes 46 can be reversed and/or modified. For example, the vanes 46 can be provided with a protrusion or lip that can engage a corresponding groove or channel in modified top and bottom plates. In another embodiment, the flanges 55 are configured to engage a groove or channel within a modified top or bottom plate. In still other embodiments, the vanes can be held together without utilizing a top and/or bottom plate as will be described below.
With reference to
Use of separate components, which can be assembled and, in some embodiments, disassembled as described above, provides numerous advantages. For example, if the modular stator vanes 46, base plate 44, and top plate 42 were molded together in one process, molding could be more difficult and expensive than if each component was made separately and assembled later. Thus, there is an advantage in having multiple components which can be molded separately and assembled together to create a stator assembly 16. The illustrated arrangement also reduces storage costs as the individual vanes 46 can be stacked on top of each other when disassembled. Additionally, by using separate pieces, the stator assembly 16 can be disassembled and reassembled quickly and easily, saving space and time should the components need to be stored, packaged, and/or shipped.
Additionally, by using separate pieces, the columnar air moving device 12 can be arranged and configured in various ways, and different components from one assembly 16 can be substituted for or replaced with other components from other assemblies 16. For example, different sized modular stator vanes 46 can be used in the same assembly, and/or stator vanes 46 which have different lips and/or grooves 54, 56 can be used. As described above, using modular stator vanes 46 with different lips and/or grooves 54, 56 can create different angles between the modular stator vanes 46 once the modular stator vanes 46 are assembled, thereby affecting the flow pattern of the air moving through the stator assembly 16 and/or device 12.
While the foregoing written description of embodiments of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific exemplary embodiments and methods herein. The invention should therefore not be limited by the above described embodiment and method, but by all embodiments and methods within the scope and spirit of the invention as claimed.
This application is a continuation of U.S. patent application Ser. No. 12/724,799, filed on Mar. 16, 2010, which claims benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/164,808, filed Mar. 30, 2009, and to U.S. Provisional Patent Application No. 61/222,439, filed Jul. 1, 2009. Each of the above applications is incorporated in its entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
61222439 | Jul 2009 | US | |
61164808 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12724799 | Mar 2010 | US |
Child | 14134225 | US |