Columnar air moving devices, systems and methods

Information

  • Patent Grant
  • 11713773
  • Patent Number
    11,713,773
  • Date Filed
    Monday, December 27, 2021
    2 years ago
  • Date Issued
    Tuesday, August 1, 2023
    a year ago
Abstract
An air moving device includes a housing member, an impeller assembly, and a nozzle assembly. The nozzle assembly can include one or more angled vanes set an angle with respect to a central axis of the air moving device. The air moving device can output a column of moving air having an oblong and/or rectangular cross-section. A dispersion pattern of the column of moving air upon the floor of an enclosure in which the air moving device is installed can have an oblong and/or rectangular shape. The dimensions of the dispersion pattern may be varied by moving the air moving device toward or away from the floor, and/or by changing the angles of the stator vanes within the nozzle assembly.
Description
FIELD OF THE INVENTIONS

The present application relates generally to systems, devices and methods for moving air that are particularly suitable for creating air temperature de-stratification within a room, building, or other structure.


DESCRIPTION OF THE RELATED ART

The rise of warm air and the sinking of cold air can create significant variation in air temperatures between the ceiling and floor of buildings with conventional heating, ventilation and air conditioning systems. Air temperature stratification is particularly problematic in large spaces with high ceilings such as grocery stores, warehouses, gymnasiums, offices, auditoriums, hangers, commercial buildings, residences with cathedral ceilings, agricultural buildings, and other structures, and can significantly increase heating and air conditioning costs. Structures with both low and high ceiling rooms can often have stagnant or dead air, as well, which can further lead to air temperature stratification problems.


SUMMARY

An aspect of at least one of the embodiments disclosed herein includes the realization that it can be desirable to de-stratify air in a localized manner. For example, it is desirable to de-stratify air between coolers or freezer aisles in a grocery store setting without moving warm air directly onto the coolers or freezers.


Therefore, it would be advantageous to not only have an air de-stratification device that is designed to de-stratify the air in a room and reduce pockets of high temperature near the ceiling, but also to have an air de-stratification device that directs air in a localized, elongate pattern. De-stratifying air in a localized, elongate pattern could permit use of fewer air moving devices in a given aisle or other narrow area while reducing the amount of air passage to areas adjacent the aisle of narrow area. In some embodiments, de-stratifying air in such a pattern can reduce overall energy requirements to maintain a given temperature in the aisles or other narrow areas of a grocery store or other enclosure.


In some cases, de-stratifying air in an elongate pattern can warm the environment in the aisles (e.g., freezer aisles) of a grocery store while reducing or eliminating movement of air directly onto freezers or other refrigeration devices adjacent to the aisles. Warming up the aisles of a grocery store can increase comfort for shoppers and, thus allows for more time for the shopper to spend in the aisles actually buying products. Increasing the time shoppers spend in the grocery aisles can increase sales for the entire grocery store.


In some embodiments, de-stratifying air in the aisles of a freezer or refrigeration section of a grocery store can reduce or eliminate fogging or other condensation on the display windows of the freezer or refrigerator units. In some cases, de-stratifying the air in these aisles can dry up water on the floor of the aisle. Drying the aisle floors can reduce hazards in the grocery store and/or reduce the store's exposure to liability due to the condensation from the windows which may cause a slippery floor.


Thus, in accordance with at least one embodiment described herein, a columnar air moving device can include a housing. The housing can have a first end and a second end. In some embodiments, the housing has a longitudinal axis extending between the first end and the second end. The air moving device can include an impeller. The impeller can be rotatably mounted within the housing adjacent the first end of the housing. In some embodiments, the impeller has one or more rotor blades capable of directing a volume of air toward the second end of the housing. In some cases, the impeller is configured to rotate about an axis (e.g., a rotational axis) parallel or coincident to the longitudinal axis of the housing. The air moving device can include a nozzle. The nozzle can be mounted in the housing between the impeller and the second end of the housing. The nozzle can have an inlet with a circular cross-section. In some embodiments, the nozzle has an outlet with an oblong cross-section. The oblong cross-section can have a major axis and a minor axis. In some cases, one or more stator vanes are positioned within the nozzle. In some embodiments, at least one of the stator vanes has a first end at or adjacent to the inlet of the nozzle and a second end at or adjacent to the outlet of the nozzle. In some embodiments, the first end of the at least one stator vane is positioned closer to the longitudinal axis of the housing than the second end of the at least one stator vane.


According to some variants, a gap between a downstream edge of the rotor blades and an upstream edge of one or more of the stator vanes is less than one half of a diameter of the impeller. In some cases, one of the stator vanes is parallel to and positioned along the longitudinal axis of the housing. In some embodiments, the air moving device comprises an inner housing positioned at least partially within the housing, wherein the two one or more stator vanes are positioned within the inner housing. The air moving device can include a hanger capable of attaching to the air moving device. The hanger can be configured to facilitate attachment of the air moving device to a ceiling or other structure. In some embodiments, the hanger is hingedly attached to the air moving device. In some embodiments, the air moving device includes an inlet cowl comprising a curved surface configured to reduce generation of turbulence at the first end of the housing. In some cases, a length of the minor axis of the outlet of the nozzle is less than ⅓ of a length of the major axis of the outlet of the nozzle. In some embodiments, a cross-sectional area of the outlet of the nozzle is less than the cross-sectional area of the inlet of the nozzle.


A method of de-stratifying air within an enclosure can include positioning an air moving device above a floor of the enclosure. The air moving device can have a longitudinal axis. In some embodiments, the air moving device includes a nozzle mounted in the housing between the impeller and the second end of the housing. The nozzle can have an inlet with a circular cross-section and an outlet with an oblong cross-section. In some embodiments, the oblong cross-section has a major axis and a minor axis. The cross-section (e.g., circular cross-section) of the inlet can have a greater area than the cross-section (e.g., oblong cross-section) of the outlet. In some cases, the method includes actuating an impeller of the air moving device, the impeller having a rotational axis substantially parallel to or coincident the longitudinal axis of the air moving device. The method can include directing an oblong column of air toward the floor from the air moving device, the oblong column of air having a major axis and a minor axis, the major axis of the oblong column of air being greater than the minor axis of the oblong column of air. In some embodiments, the method includes moving the air moving device toward or away from the floor to vary a cross-sectional area of a portion of the oblong column of air which impinges upon the floor. According to some variants, the method includes changing an angle of a stator vane within the nozzle to change the length of the major axis of the oblong column of air.


In accordance with at least one embodiment of the present disclosure, an air moving device can include a housing. The housing can have a first end, a second end, and a longitudinal axis extending between the first end and the second end. In some cases, the device includes an impeller. The impeller can be rotatably mounted within the housing. In some embodiments, the impeller is mounted adjacent the first end of the housing. The impeller can have one or more rotor blades capable of directing a volume of air toward the second end of the housing. In some embodiments, the impeller is configured to rotate about a rotational axis. In some cases, the device includes a nozzle. The nozzle can be connected to the housing. In some cases, the nozzle is connected to the housing between the impeller and the second end of the housing. The nozzle can have an inlet and an outlet. The outlet can have an oblong cross-section. In some embodiments, the oblong cross-section has a major axis and a minor axis. The device can include one or more stator vanes. The one or more stator vanes can be positioned within the nozzle. In some embodiments, at least one of the stator vanes has a first end at or adjacent to the inlet of the nozzle and a second end at or adjacent to the outlet of the nozzle. In some embodiments, the first end of the at least one stator vane is positioned closer to the longitudinal axis of the housing than the second end of the at least one stator vane. In some embodiments, a cross-sectional shape of the inlet of the nozzle is different from the cross-section of the outlet of the nozzle.


In some embodiments, a gap between a downstream edge of the rotor blades and an upstream edge of one or more of the stator vanes is less than one half of a diameter of the impeller. In some cases, one of the stator vanes is parallel to and positioned along the longitudinal axis of the housing. In some embodiments, the device comprises an inner housing positioned at least partially within the housing. In some cases, the one or more stator vanes are positioned within the inner housing. In some embodiments, the air moving device includes a hanger capable of attaching to the air moving device. The hanger can be configured to facilitate attachment of the air moving device to a ceiling or other structure. In some embodiments, the hanger is hingedly attached to the air moving device. Preferably, the air moving device includes an inlet cowl comprising a curved surface configured to reduce generation of turbulence at the first end of the housing. In some embodiments, a length of the minor axis of the outlet of the nozzle is less than a length of the major axis of the outlet of the nozzle. In some cases, a cross-sectional area of the outlet of the nozzle is less than a cross-sectional area of the inlet of the nozzle. In some cases, the inlet of the nozzle has an elliptical shape. In some embodiments, the inlet of the nozzle has a circular shape. In some embodiments, the nozzle decreases in cross-sectional area from the inlet to the outlet.


According to at least one embodiment of the present disclosure, a method of de-stratifying air within an enclosure can include utilizing an air moving device above a floor of the enclosure. The air moving device can have a longitudinal axis. In some embodiments, the air moving device includes a nozzle. The nozzle can be mounted in the housing. In some embodiments, the nozzle is mounted in the housing between the impeller and the second end of the housing. In some cases, the nozzle has an inlet with a circular cross-section. In some embodiments, the nozzle has an outlet with an oblong cross-section. The oblong cross-section can have a major axis and a minor axis. In some embodiments, the circular cross-section of the inlet can have a greater area than the oblong cross-section of the outlet. In some cases, the method includes actuating an impeller of the air moving device. The impeller can have a rotational axis substantially parallel to the longitudinal axis of the air moving device. The method can include directing an oblong column of air toward the floor from the air moving device. The oblong column of air can have a major axis and a minor axis. The major axis of the oblong column of air can be greater than the minor axis of the oblong column of air.


According to some variants, the method includes changing an angle of a stator vane within the nozzle to change a length of the major axis of the oblong column of air. The method can include moving the air moving device toward or away from the floor to vary a cross-sectional area of a portion of the oblong column of air which impinges upon the floor.


In accordance with at least one embodiment of the present disclosure, an air moving device can include an impeller assembly. The impeller assembly can have an inlet end and an outlet end. The impeller assembly can include an impeller. The impeller can be positioned between the inlet end and the outlet end. The impeller can have a first impeller blade and a second impeller blade. In some embodiments, the impeller has an axis of rotation wherein rotation of the first and second impeller blades about the axis of rotation draws air into the inlet end of the impeller assembly and pushes air out of the outlet end of the impeller assembly. The air moving device can include a nozzle assembly. The nozzle assembly can be positioned downstream from the outlet end of the impeller assembly. In some embodiments, the nozzle assembly has a nozzle housing. The nozzle housing can have a nozzle inlet and a nozzle outlet positioned further from the impeller assembly than the nozzle inlet. The nozzle housing can define a nozzle interior between the nozzle inlet and the nozzle outlet. In some embodiments, the nozzle assembly includes a nozzle axis. The nozzle assembly can include a first stator vane. The first stator vane can be positioned at least partially within the nozzle interior. In some embodiments, the first stator vane has an upstream end and a downstream end. The nozzle assembly can include a second stator vane. The second stator vane can be positioned at least partially within the nozzle interior. In some embodiments, the second stator vane has an upstream end and a downstream end. In some cases, the upstream end of the first stator vane is bent at a first angle with respect to the nozzle axis. Preferably, the upstream end of the second stator vane is bent at a second end with respect to the nozzle axis. In some embodiments, the first angle is less than the second angle.


According to some variants, the nozzle outlet has an oblong cross-section as measured perpendicular to the nozzle axis. In some configurations, the air moving device includes a third stator vane. The third stator vane can be positioned at least partially within the nozzle interior. The third stator vane can have an upstream end and a downstream end. In some embodiments, the upstream end of the third stator vane is bent at a third angle with respect to the nozzle axis. Preferably, the third angle is greater than the second angle. In some cases, the downstream end of the second stator vane is parallel to the nozzle axis. In some embodiments, the air moving device includes a fourth stator vane. The fourth stator vane can be positioned at least partially within the nozzle interior. In some embodiments, the fourth stator vane has an upstream end and a downstream end, wherein the upstream end of the fourth stator vane is bent at a fourth angle with respect to the nozzle axis. Preferably, the fourth angle is equal to the first angle. In some cases, the upstream end of the fourth stator vane is bent in a direction opposite the bend of the upstream end of the first stator vane, with respect to the nozzle axis. In some embodiments, the nozzle assembly includes a cross-vane having an upstream end and a downstream end. The cross-vane can separate the nozzle interior into a first nozzle chamber and a second nozzle chamber. In some embodiments, the first stator vane is positioned within the first nozzle chamber and the fourth stator vane is positioned within the second nozzle chamber. In some embodiments, the air moving device includes an outer housing having a housing inlet, a housing outlet, and a housing interior between the housing inlet and the housing outlet. In some cases, each of the impeller assembly and the nozzle assembly are positioned at least partially within the housing interior. In some embodiments, during a single revolution of the first and second impeller blades about the axis of rotation of the impeller, the first impeller blade passes the first stator vane before passing the second stator vane. In some embodiments, during a single revolution of the first and second impeller blades about the axis of rotation of the impeller, the first impeller blade passes the first stator vane before passing the third stator vane.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present embodiments will become more apparent upon reading the following detailed description and with reference to the accompanying drawings of the embodiments, in which:



FIG. 1 is a top perspective view of an air moving device in accordance with an embodiment.



FIG. 2A is a cross-sectional view of the device of FIG. 1, taken along line 2-2 in FIG. 1.



FIG. 2B is a top perspective cross-sectional view of the device of FIG. 1, taken along line 2-2 in FIG. 1.



FIG. 3A is a cross-sectional view of the device of FIG. 1, taken along line 3-3 in FIG. 1.



FIG. 3B is a top perspective cross-sectional view of the device of FIG. 1, taken along line 3-3 in FIG. 1.



FIG. 4 is a top plan view of the device of FIG. 1.



FIG. 5 is a bottom plan view of the device of FIG. 1.



FIG. 6A is a cross-sectional view of the device of FIG. 1, taken along line 2-2 in FIG. 1, and a column of moving air leaving an outlet of the device.



FIG. 6B is a cross-sectional view of the device of FIG. 1, taken along line 3-3 in FIG. 1, and a column of moving air leaving an outlet of the device.



FIG. 7 is a top plan view of a dispersion pattern of the column of moving air which impinges the floor of an enclosure.



FIG. 8 is a top plan view of an embodiment of an air moving device wherein one or more of the stator vanes has a bent upstream end.



FIG. 9 is a cross-sectional view of the device of FIG. 8, taken along the line 9-9 of FIG. 8.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As illustrated in FIG. 1, an air moving device 100 can include an outer housing 110. The outer housing 110 can have a generally cylindrical shape, though other shapes are possible. For example, the outer housing 110 can have an annularly symmetric shape with varying diameters along a length of the outer housing 110. The air moving device 100 can have an inlet 112 and an outlet 114. As illustrated, the air moving device 100 can have a central axis CL extending through the air moving device 100 between the inlet 112 and the outlet 114.


A hanger 116 may be attached to the outer housing 110. For example, the hanger 116 may be hingedly attached to the outer housing 110 via one or more hinge points 118. The hanger 116 can facilitate installation of the air moving device 100 at or near a ceiling or other structure within an enclosure (e.g., a warehouse, retail store, grocery store, home, etc.). Further, the hanger 116 may advantageously space the inlet 112 from a mounting surface (e.g., a ceiling or other mounting surface). The hinged connection between the hanger 116 and the outer housing 110 can permit tilting of the air moving device 100 about the hinge points 118 before and/or after installation of the air moving device 100. In certain embodiments, no hanger may be used.


As illustrated in FIGS. 2A-3B, the air moving device 100 can include a nozzle assembly 120. The nozzle assembly 120 can include an inner housing 122. The inner housing 122 can be attached to the outer housing 110. In some embodiments, the inner housing 122 is positioned entirely within the outer housing 110. In some embodiments, a portion of the inner housing 122 extends out from the inlet 112 and/or from the outlet 114 of the outer housing 110. In some applications, the air moving device 100 does not include an outer housing 110. In some such cases, the hanger 116 is attached directly to the inner housing 122.


The air moving device 100 can include an impeller 124. The impeller 124 can be positioned at least partially within the inner housing 122. As illustrated, the impeller 124 can be positioned within an impeller housing 125. In some embodiments, the impeller housing 125 and inner housing 122 form a single and/or monolithic part. The impeller 124 can be configured to rotate one or more impeller blades 126. The impeller blades 126 can be fixed to a hub 123a of the impeller 124. In some embodiments, as illustrated in FIG. 3A, the impeller blades 126 are fixed to the hub 123a of the impeller 124 and fixed to an outer impeller body portion 123b. An axis of rotation of the impeller 124 can be substantially parallel to the central axis CL of the air moving device 100. For example, the impeller 124 and impeller blades 126 can act as an axial compressor within the air moving device 100 when the air moving device 100 is in operation. The impeller 124 can be configured to operate at varying power levels. For example, the impeller 124 can operate between 5 and 10 watts, between 7 and 15 watts, between 12 and 25 watts, and/or between 20 and 50 watts. In some embodiments, the impeller 124 is configured to operate at a power greater than 5 watts, greater than 10 watts, greater than 15 watts, and/or greater than 25 watts. Many variations are possible. In some cases, the power usage and/or size of the impeller used is determined by the height at which the air moving device 100 is installed within an enclosure. For example, higher-powered impellers 124 can be used for air moving devices 100 installed further from the floor of an enclosure.


The inlet 112 can include an inlet 112 cowl. The inlet 112 cowl can be sized and shaped to reduce turbulence of flow of air entering inlet 112 of the air moving device 100. For example, as illustrated in FIG. 2A, the inlet cowl 128 can have a curved shape. The curved shape of the inlet cowl 128 can extend from an outer perimeter of the inlet 112 to an inlet to the impeller housing 125. The curved shape of the inlet cowl 128 can reduce the amount of sharp corners or other turbulence-inducing features faced by air approaching the impeller 124 from the inlet 112.


In some embodiments, the nozzle assembly 120 includes one or more stator vanes. For example, as illustrated, the nozzle assembly 120 can include a center vane 130. The center vane 130 can be planar, and/or parallel to the central axis of the air moving device 100. The center vane 130 can be positioned in a substantial center of the nozzle assembly 120 as measured on the plane of FIG. 2A.


The nozzle assembly 120 can include one or more angled vanes 132a, 132b. The angled vanes 132a, 132b can be planar (e.g., straight) and/or curved (e.g., S-shaped, double-angled, etc.). In some embodiments, the nozzle assembly 120 includes one angled vane on each side of the center vane 130. In some embodiments, more than one angled vane is positioned on each side of the center vane 130. Many variations are possible. The angle θ of the angled vanes 132a, 132b with respect to the central axis CL of the air moving device 100 can be greater than or equal to 5°, greater than or equal to 10°, greater than or equal to 15°, greater than or equal to 25°, and/or greater than or equal to 45°. In some cases, the angle θ of the angled vanes 132a, 132b with respect to the central axis CL of the air moving device 100 is between 5° and 65°. Many variations are possible. In some embodiments, the nozzle assembly 120 has an even number of stator vanes. In some cases, the nozzle assembly 120 does not include a center vane 130 and only includes one or more angled vanes. The air moving device 100 can be constructed such that the nozzle assembly 120 is modular with respect to one or more of the other components of the air moving device 100. For example, in some embodiments, a nozzle assembly 120 can be removed from the air moving device 100 and replaced with another nozzle assembly 120 (e.g., a nozzle assembly having a larger outlet, a smaller outlet, more or fewer stator vanes, greater or lesser vane angles, etc.). In some cases, the inner housing 122 of the nozzle assembly 120 is constructed in two halves, each half connected to the other half via one or more fasteners 127 or other fastening devices. In some such cases, the two halves of the inner housing 122 can be separated to permit replacement of one or more of the stator vanes 130, 132a, 132b.


Referencing FIGS. 3A-3B, the nozzle assembly 120 can include one or more cross-vanes 136. The one or more cross-vanes 136 can be planar and/or curved. The one or more cross-vanes may be positioned within the nozzle assembly 120 perpendicular to one or more of the vanes 130, 132a, 132b. For example, the nozzle assembly 120 can include a single cross-vane 136 that is substantially perpendicular to the center vane 130. The cross-vane 136 can be positioned in a substantial center of the nozzle assembly 120 as measured on the plane of FIG. 3A.


As illustrated in FIG. 4, the inlet 112 of the air moving device 100 can have a substantially circular cross-section. In some case, an upstream end or inlet (e.g., the upper end with respect to FIG. 2A) of the nozzle assembly 120 has a substantially circular cross-section. In some embodiments, as illustrated in FIG. 5, the outlet 114 of the air moving device 100 (e.g., the outlet of the nozzle assembly 120) has a substantially rectangular, oval-shaped, and/or oblong cross-section. For example, the outlet of the nozzle assembly 120 can have a pair of long sides 115a, 115b and a pair of short sides 117a, 117b. Each of the long sides 115a, 115b can be substantially identical in length. In some embodiments, each of the short sides 117a, 117b are substantially identical in length. The length of the short sides 117a, 117b can be substantially equal to a length of a minor axis of the oblong shape of the outlet of the nozzle assembly 120. In some embodiments, the length of the long sides 115a, 115b of the outlet of the nozzle assembly 120 is substantially equal to a length of a major axis of the oblong shape of the outlet of the nozzle assembly 120. The length of the short sides 117a, 117b can be less than or equal to ⅛, less than or equal to ⅙, less than or equal to ¼, less than or equal to ⅓, less than or equal to ½, less than or equal to ⅝, less than or equal to ¾, and/or less than or equal to 9/10 of the length of the long sides 115a, 115b. In some cases, the length of the short sides 117a, 117b is between ⅛ and ½, between ⅓ and ¾, and/or between ⅜ and 9/10 of the length of the long sides 115a, 115b. Many variations are possible. In some embodiments, the outlet of the nozzle assembly can be elliptical or rectangular in shape.


The cross-sectional area of the outlet of the nozzle assembly 120 is less than or equal to 95%, less than or equal to 90%, less than or equal to 85%, less than or equal to 75% and/or less than or equal to 50% of the cross-sectional area of the inlet of the nozzle assembly 120. In some embodiments, the cross-sectional area of the outlet of the nozzle assembly 120 is between 75% and 95%, between 55% and 85%, between 70% and 90%, and/or between 30% and 60% of the cross-sectional area of the inlet of the nozzle assembly 120. Many variations are possible.


As illustrated in FIGS. 2B and 5, the hanger 116 can be connected to the outer housing 110 at hinge points 118 having an axis of rotation generally perpendicular to the center vane 130 (e.g., generally parallel to the major axis of the outlet to the nozzle assembly 120). In some such arrangements, the air moving device 100 can be mounted offset from a centerline of an aisle and rotated about the hinge points 118 to direct air toward the center of the floor of the aisle. For example, the air moving device 100 can be installed adjacent to a light fixture, where the light fixture is positioned over a centerline of the aisle.


In some embodiments, the nozzle assembly 120 can be rotatable within the outer housing 110. For example, the nozzle assembly 120 can be rotated about the axis of rotation of the impeller 124 with respect to the hanger 116. In some such embodiments, the nozzle assembly 120 can be releasable or fixedly attached to the outer housing 110 in a plurality of rotational orientations. For example, the inner housing 122 and/or nozzle assembly 120 can be installed in the outer housing 110 such that the axis of rotation of the hanger 116 is generally perpendicular to the major axis of the outlet of the nozzle assembly 120.


In some embodiments, the air moving device 100 includes one or more bezels 138. The bezels 138 can be positioned between the inner housing 122 and the outer housing 110 at the outlet 114 of the air moving device 100. For example, the bezels 138 can be positioned between the oblong wall of the outlet 114 of the air moving device 100 and the substantially circular wall of the outer housing 110 adjacent the outlet 114. The bezels 138 can provide structural stability at the outlet end 114 of the air moving device 100. For example, the bezels 138 can reduce or eliminate later motion (e.g., motion transverse to the central axis CL of the air moving device 100) between the outlet of the nozzle assembly 120 and the outlet end of the outer housing 110. The bezels 138 can be configured to be interchangeable. For example, the bezels 138 can be replaced with bezels of varying sizes and shapes to correspond with nozzle outlets of various sizes and shapes. In some cases, interchangeable bezels can be mounted adjacent the nozzle inlet to correspond to nozzle inlets having various sizes and shapes.


As illustrated in FIG. 2A, a gap 134 between the impeller blades 126 and one or more of the vanes can be small. For example, a height HG (measured parallel to the axis of rotation of the impeller 124) of the gap 134 between the downstream edge of the impeller blades 126 and an upstream edge of one or more of the stator vanes can be proportional to the diameter of the impeller 124 (e.g., diameter to the tip of the impeller blades 126). Preferably, the height HG of the gap 134 is less than or equal to one half the diameter of the impeller 124.


Referring to FIGS. 6A and 6B, the air moving device 100 can be configured to output a column of air 140. The column of moving air 140 can extend out from the outlet 114 of the air moving device 100. In some embodiments, the column of moving air 140 flairs outward in a first direction while maintaining a substantially constant width in a second direction. For example, the column of moving air 140 may flair outward from the central axis CL of the air moving device in a plane parallel to the plane of the cross-vane 136 (e.g., the plane of FIG. 6A). The column of moving air 140 can flair out at an angle β with respect to the central axis CL of the air moving device 100. Angle β can be greater than or equal to 3°, greater than or equal to 7°, greater than or equal to 15°, greater than or equal to 25°, and/or greater than or equal to 45°. In some embodiments, angle β is between 2° and 15°, between 8° and 25°, between 20° and 45°, and/or between 30° and 60°. Many variations are possible. The angle β of the column of moving air 140 can be proportional to the angle θ of the angled vanes 132a, 132b. For example, increasing the angle θ of the angled vanes 132a, 132b can increase the angle β of the column of moving air 140 (e.g., to widen the column of moving air 140). In some cases, reducing the angle θ of the angled vanes 132a, 132b can reduce the angle β of the column of moving air 140. As illustrated in FIG. 6B, the column of moving air 140 may have a generally columnar (e.g., vertical or non-flaring) pattern in a plane perpendicular to the plane of the cross-vane 136 (e.g., the plane of FIG. 6B).


In some embodiments, the dispersion pattern 142 of the air column 140 which impinges the floor 144 of the enclosure in which the air moving device 100 is installed has a width W and a length L. The length L can be greater than the diameter D or cross-sectional width of the air moving device 100, as illustrated in FIG. 6A. For example, the length L of the dispersion pattern 142 can be greater than or equal to 1.1 times, greater than or equal to 1.3 times, greater than or equal to 1.5 times, greater than or equal to 1.7 times, greater than or equal to 2 times, greater than or equal to 2.3 times, greater than or equal to 2.7 times, and/or greater than or equal to 4 times the diameter D of the air moving device 100. In some cases, the length L of the dispersion pattern 142 is between 1 and 1.8 times greater, between 1.7 and 2.9 times greater, and/or between 2.7 and 5 times greater than the diameter D of the air moving device 100.


In some embodiments, the width W is less than or equal to the diameter of the air moving device 100, as illustrated in FIG. 6B. For example the width W of the dispersion pattern 142 can be between ¼ and ¾, between ½ and ⅞, and/or between ¾ and 9/10 of the diameter D of the air moving device 100. In some cases, the width W of the dispersion pattern 142 is greater than the diameter D of the air moving device 100 (e.g., when the column of moving air 140 expands at a distance from the outlet 114 of the air moving device 100). For example, the width W of the dispersion pattern can be between 1 and 1.4 times, between 1.3 and 1.8 times, and/or between 1.5 and 2.5 times the diameter D of the air moving device 100. The width W can be sized and shaped to fit between two or more storage units 144 (e.g., within an aisle) in a grocery store or other retail setting. In some cases, the width W is less than ⅛, less than ¼, less than ⅓, less than ½, less than ⅔, less than ¾, and/or less than 9/10 of the length L of the dispersion pattern 142. The width W can be between 1/10 and ¼, between ⅛ and ⅓, between ½ and ¾, and/or between ⅝ and 9/10 of the length of the dispersion pattern 142. Many variations are possible. Each of the above ratios between the width W of the dispersion pattern 142, the length L of the dispersion pattern 142, and the diameter D of the air moving device 100 can be attained when the air moving device 100 is mounted at a given height H from the floor 144. For example, the height H can be between 8 feet and 12 feet, between 10 feet and 15 feet, between 14 feet and 20 feet, and/or between 18 feet and 40 feet. At a given height, the angles θ of the angled vanes 132a, 132b can be modified to modify the ratio between the width W of the dispersion pattern 142, the length L of the dispersion pattern 142, and the diameter D of the air moving device 100.


A user of the air moving device 100 can vary the first width W1 of the dispersion pattern 142. For example, the user can increase the height H at which the air moving device 100 is installed within the enclosure. Increasing the height H can increase the distance over which the column of moving air 140 flairs outward, increasing the width W1. Conversely, decreasing the height H can decrease the width W1 of the dispersion pattern 142.



FIGS. 8 and 9 illustrate an embodiment of an air moving device 1100. Numerical reference to components is the same as previously described, except that the number “1” has been added to the beginning of each reference. Where such references occur, it is to be understood that the components are the same or substantially similar previously-described components unless otherwise indicated. For example, in some embodiments, the impeller 1124 of the air moving device 1100 can be the same or substantially similar in structure and/or function to the impeller 124 of the air moving device 100 described above. The air moving device 1100 can include a hanger (not shown) having the same or a similar structure to the hanger 116 described above.


As illustrated in FIGS. 8 and 9 the air moving device 1100 can include a plurality of stator blades 1132a, 1132b, 1132c, 1132d, 1132e, and/or 1132f (hereinafter, collectively referred to as stator blades 1132). Each of the stator blades 1132 can include an upstream end 1133 and a downstream end 1135 (hereinafter, specific upstream and downstream ends of specific stator blades are identified by like letters, e.g., upstream and downstream ends 1133a, 1135a of stator blade 1132a). In some cases, the upstream end(s) of one or more of the stator blades 1132 is curved away from or bent at an angle with respect to the axis of rotation of the impeller 1124. In some embodiments, the axis of rotation of the impeller 1124 is parallel to and/or collinear with the central axis CL (e.g., nozzle axis) of the air moving device 1100. The upstream end(s) of one or more of the stator blades 1132 can be curved away from or bent to reduce the angle of attack on the upstream end of the stator blade of the air exiting the impeller 1124. Reducing the angle of attack on the upstream end of the stator blade of the air exiting the impeller 1124 can reduce turbulent flow within the device 1100. Reducing turbulent flow in the device 1100 can reduce noise and/or increase efficiency (e.g., exit flow rate compared to electricity used) of the device 1100.


In some embodiments, the bent upstream portions of the stator blades 1132 are curved away from or bent in directions parallel to the cross-vane 1136 of the nozzle assembly 1120. For example, the cross-vane 1136 can separate the interior of the nozzle assembly 1120 (e.g., the interior of the inner housing 1122) into two separate chambers 1137a, 1137b. In some cases, multiple cross-vanes separate the interior of the nozzle assembly into three or more separate chambers. As illustrated, the first, second, and third stator vanes 1132a-c are positioned in one chamber (e.g., first chamber 1137a) of the interior of the nozzle and the fourth, fifth, and sixth stator vanes 1132d-f are positioned in another chamber (e.g., second chamber 1137b) of the interior of the nozzle. The stator vanes positioned on one side of cross-vane 1136 (e.g., in a first chamber of the nozzle interior) are curved or bent in a direction opposite the direction in which the stator vanes positioned on the opposite side of the cross-vane 1136 (e.g., in a second chamber of the nozzle interior) are curved or bent.


As illustrated, the impeller 1124 of the air moving device 1100 is configured to rotate in the clockwise direction (e.g., in the frame of reference of the plane of FIG. 8) about the axis of rotation of the impeller 1124 when moving air into the inlet 1112 and out through the outlet 1114 of the device 1100. The cross-vane lateral component of the air exiting the impeller 1124 can be defined as the velocity component parallel to the cross-vane 1136 and perpendicular to the axis of rotation of the impeller 1124. The cross-vane lateral component of the air exiting a given rotor blade 1126 can changer as the blade 1126 rotates about the axis of rotation of the impeller 1124. For example, the cross-vane lateral component of the air exiting a given rotor blade can be close to zero as the rotor blade passes the cross-vane 1136. The cross-vane lateral component of the air exiting the given rotor blade will increase as the rotor blade continues to move about the axis of rotation of the impeller 1124, before diminishing as the impeller blade approaches the cross-vane 1136 on an opposite side of the device 1100 from the point at which the impeller blade had previously crossed the cross-vane 1136.


As illustrated in FIG. 9, one or more of the stator vanes 1132 can be curved or bent at their respective first ends 1133 to an inlet angle. For example, the inlet end 1133a of the first stator vane 1132a can be curved or bent to a first inlet angle IA1. The inlet end 1133b of the second stator vane 1132b can be curved or bent to a second inlet angle IA2. The inlet end 1133c of the third stator vane 1132c can be curved or bent to a third inlet angle IA3. As illustrated, in some cases, the first inlet angle IA1 is less than the second inlet angle IA2. In some cases, the first inlet angle IA1 is less than the third inlet angle IA3. In some cases, the second inlet angle IA2 is less than the third angle IA3.


In some embodiments, the downstream end 1135 of one or more of the stator vanes 1132 is angled with respect to (e.g., bent and/or curved away from) the axis of rotation of the impeller 1124 by an outlet angle. For example, the downstream end 1135a of the first stator vane 1132a can be angled with respect to the axis of rotation of the impeller 1124 by an outlet angle OA1. The outlet end 1135b of the second stator vane 1132b can be angled with respect to the axis of rotation of the impeller 1124 by an outlet angle OA2. The outlet end 1135c of the third stator vane 1132c can be angled with respect to the axis of rotation of the impeller 1124 by an outlet angle OA3. One or more of the outlet angles (e.g., the outlet angle OA2 of the second stator vane 1132b) can be zero. In some cases, the outlet angles OA1, OA3 of the first and third stator vanes 1132a, 1132c are opposite each other such that the outlet ends 1135a, 1135c of the first and third stator vanes 1132a, 1132c flare outward or taper inward with respect to the axis of rotation of the impeller 1124. One or both of the outlet angles OA1, OA3 of the first and third stator vanes 1132a, 1132c can be similar to or equal to the angle θ of the angled vanes 132a, 132b with respect to the axis of rotation of the impeller 1124.


The stator vanes positioned within the second chamber 1137b of the interior of the nozzle assembly 1120 can have the same or similar construction and features of the stator vanes positioned within the first chamber 1137a, wherein the vanes in the second chamber 1137b are mirrored about the centerline CL of the device 1100 with respect to the vanes in the first chamber 1137a. For example, the fourth stator vane 1132d can have the same or a similar overall shape and position in the second chamber 1137b as the first stator vane 1132a has in the first chamber 1137a. The same can be true when comparing the fifth stator vane 1132e to the second stator vane 1132b, and/or when comparing the sixth stator vane 1132f to the third stator vane 1132c. In some embodiments, the angles of attack on the upstream ends of the stator vanes 1132d-f of the air exiting a given impeller blade as it passes the stator vanes 1132d-f are the same as or similar to the angles of attack on the upstream ends of the stator vanes 1132a-c, respectively, of the air exiting the impeller blade as it passes the stator vanes 1132d-f.


The terms “approximately”, “about”, “generally” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of the stated amount.


Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments can be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. An air moving device comprising: a housing comprising an outer housing and an inner housing, the inner housing coupled to the outer housing and positioned within the outer housing;an impeller rotatably mounted at least partially within the inner housing and configured to move air through the housing;a nozzle having an inlet and an outlet, the outlet comprising a first pair of sides and a second pair of sides, wherein the first pair of sides are shorter in length than the second pair of sides, and wherein a cross-sectional area of the outlet is less than the cross-sectional area of the inlet;one or more stator vanes positioned within the nozzle; andat least one bezel positioned at or near the outlet of the nozzle between the inner housing and the outer housing.
  • 2. The air moving device of claim 1, wherein the at least one bezel is removably connected to the air moving device.
  • 3. The air moving device of claim 1, wherein the at least one bezel is positioned adjacent the outlet.
  • 4. The air moving device of claim 1, further comprising two bezels.
  • 5. The air moving device of claim 1, further comprising a hanger capable of attaching to the air moving device, the hanger configured to facilitate attachment of the air moving device to a ceiling or other structure.
  • 6. The air moving device of claim 1, wherein the bezel is configured to reduce motion transverse to a central axis of the air moving device.
  • 7. The air moving device of claim 1, wherein a diameter of the outer housing is generally constant, and a diameter of the inner housing varies.
  • 8. The air moving device of claim 1, wherein each side of the first pair of sides are substantially identical in length and wherein each side of the second pair of sides are substantially identical in length.
  • 9. An air moving device comprising: a housing having a length and a width, wherein an outer diameter along the length of the housing is generally constant and an inner diameter along the length of the housing varies;an impeller rotatably mounted at least partially within the housing and configured to move air through the housing;a nozzle having an inlet and an outlet, the outlet comprising a first pair of sides and a second pair of sides, wherein the first pair of sides are shorter in length than the second pair of sides, and wherein a cross-sectional area of the outlet is less than the cross-sectional area of the inlet;one or more stator vanes positioned within the nozzle; andat least one bezel positioned at or near the outlet of the nozzle.
  • 10. The air moving device of claim 9, wherein the at least one bezel is removably connected to the air moving device.
  • 11. The air moving device of claim 9, wherein the at least one bezel is positioned adjacent the outlet.
  • 12. The air moving device of claim 9, further comprising two bezels.
  • 13. The air moving device of claim 9, wherein the housing comprises an outer housing and an inner housing coupled with and positioned within the outer housing.
  • 14. The air moving device of claim 9, further comprising a hanger capable of attaching to the air moving device, the hanger configured to facilitate attachment of the air moving device to a ceiling or other structure.
  • 15. The air moving device of claim 9, wherein the bezel is configured to reduce motion transverse to a central axis of the air moving device.
  • 16. The air moving device of claim 9, wherein each side of the first pair of sides are substantially identical in length and wherein each side of the second pair of sides are substantially identical in length.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/926,269 filed Jul. 10, 2020, titled COLUMNAR AIR MOVING DEVICES, SYSTEMS AND METHODS, which is a continuation of U.S. application Ser. No. 16/250,426, filed Jan. 17, 2019, titled COLUMNAR AIR MOVING DEVICES, SYSTEMS AND METHODS, now U.S. Pat. No. 10,724,542, which is a continuation of U.S. application Ser. No. 14/729,905, filed Jun. 3, 2015, titled COLUMNAR AIR MOVING DEVICES, SYSTEMS AND METHODS, now U.S. Pat. No. 10,221,861 issued on Mar. 5, 2019, which claims the benefit of U.S. Provisional Application No. 62/008,776, filed Jun. 6, 2014, titled COLUMNAR AIR MOVING DEVICES, SYSTEMS AND METHODS. The entire contents of the above-identified patent applications are incorporated by reference herein and made a part of this specification for all purposes. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR § 1.57.

US Referenced Citations (582)
Number Name Date Kind
651637 Nicol Jun 1900 A
D33522 Brinkerhoff Nov 1900 S
818604 Bierd Apr 1906 A
866292 Meston Sep 1907 A
917206 Watts Apr 1909 A
1858067 Warren May 1932 A
1877347 McCurdie Sep 1932 A
1926795 Sassenberg Sep 1933 A
2016778 Hall et al. Oct 1935 A
2142307 De Mey et al. Jan 1939 A
2144035 Smith, Jr. Jan 1939 A
2154313 McMahan Apr 1939 A
2189008 Kurth Feb 1940 A
2189502 Johnston Feb 1940 A
2232573 Teves Feb 1941 A
2258731 Blumenthal Oct 1941 A
D133120 Spear Jul 1942 S
2300574 Jepertinger Nov 1942 A
2359021 Campbell et al. Sep 1944 A
2366773 Eklund et al. Jan 1945 A
2371821 Havis Mar 1945 A
D152397 Damond Jan 1949 S
2513463 Eklund et al. Jul 1950 A
2524974 Hickmott Oct 1950 A
2615620 Goettl Oct 1952 A
2632375 Stair et al. Mar 1953 A
2658719 Johanson Nov 1953 A
D174230 Lewis, II Mar 1955 S
2710337 Moore, Jr. Jun 1955 A
2814433 Brinen Nov 1957 A
2830523 Vehige Apr 1958 A
D187699 van Rijn Apr 1960 S
2982198 Mohrman May 1961 A
3012494 Drummond Dec 1961 A
3036509 Babbitt May 1962 A
3040993 Schultz Jun 1962 A
3068341 Ortiz et al. Dec 1962 A
3072321 King, Jr. Jan 1963 A
D195287 Downing May 1963 S
3099949 Davidson Aug 1963 A
3165294 Anderson Jan 1965 A
3188007 Myklebust Jun 1965 A
3212425 Lindner et al. Oct 1965 A
3246699 Jocz Apr 1966 A
3300123 Freyholdt et al. Jan 1967 A
3306179 Lambie et al. Feb 1967 A
3320869 Schach May 1967 A
3364839 Sweeney et al. Jan 1968 A
3382791 Baud May 1968 A
3386368 Fielding Jun 1968 A
3413905 Johnson Dec 1968 A
3524399 Bohanon Aug 1970 A
3584968 Keith Jun 1971 A
3601184 Hauville Aug 1971 A
3690244 Kallel et al. Sep 1972 A
3699872 Kruger Oct 1972 A
3765317 Lowe Oct 1973 A
3785271 Joy Jan 1974 A
3827342 Hughes Aug 1974 A
D232831 Vidmar, Jr. Sep 1974 S
3835759 LLoyd Sep 1974 A
D234847 Hoffman Apr 1975 S
3876331 Herder et al. Apr 1975 A
3927300 Wada et al. Dec 1975 A
3932054 McKelvey Jan 1976 A
3934494 Butler Jan 1976 A
3967927 Patterson Jul 1976 A
3973479 Whiteley Aug 1976 A
3988973 Honmann Nov 1976 A
4006673 Meyer et al. Feb 1977 A
D246467 Kurata Nov 1977 S
4064427 Hansen et al. Dec 1977 A
4123197 Keem et al. Oct 1978 A
D251851 Palm May 1979 S
4152973 Peterson May 1979 A
4162779 Van Steenhoven et al. Jul 1979 A
4185545 Rusth et al. Jan 1980 A
D255488 Kanarek Jun 1980 S
4210833 Neveux Jul 1980 A
D256273 Townsend et al. Aug 1980 S
4234916 Goralnik Nov 1980 A
D258010 Bowls et al. Jan 1981 S
D258526 Nederman Mar 1981 S
4261255 Anderson et al. Apr 1981 A
4321659 Wheeler Mar 1982 A
4344112 Brown Aug 1982 A
D269638 Frye, Jr. et al. Jul 1983 S
4391570 Stutzman Jul 1983 A
4396352 Pearce Aug 1983 A
D272184 Karpowicz Jan 1984 S
D273793 Nachatelo May 1984 S
D274772 Obland Jul 1984 S
4473000 Perkins Sep 1984 A
4512242 Bohanon, Sr. Apr 1985 A
4515538 Shih May 1985 A
4522255 Baker Jun 1985 A
4524679 Lyons Jun 1985 A
4546420 Wheeler et al. Oct 1985 A
4548548 Gray, III Oct 1985 A
4550649 Zambolin Nov 1985 A
D283054 Altman Mar 1986 S
4630182 Moroi et al. Dec 1986 A
4657483 Bede Apr 1987 A
4657485 Hartwig Apr 1987 A
4662912 Perkins May 1987 A
4678410 Kullen Jul 1987 A
4681024 Ivey Jul 1987 A
D291488 Delmas Aug 1987 S
4692091 Ritenour Sep 1987 A
D293029 Shwisha Dec 1987 S
4714230 Huang Dec 1987 A
4715784 Mosiewicz Dec 1987 A
4716818 Brown Jan 1988 A
4730551 Peludat Mar 1988 A
4750863 Scoggins Jun 1988 A
4790863 Nobiraki et al. Dec 1988 A
4794851 Kurrle Jan 1989 A
4796343 Wing Jan 1989 A
4848669 George Jul 1989 A
4850265 Raisanen Jul 1989 A
4890547 Wagner et al. Jan 1990 A
4895065 Lamparter Jan 1990 A
D308416 Brumbach Jun 1990 S
4930987 Stahl Jun 1990 A
4971143 Hogan Nov 1990 A
4973016 Hertenstein Nov 1990 A
D312875 Spock Dec 1990 S
D314619 Beavers et al. Feb 1991 S
5000081 Gilmer Mar 1991 A
5021932 Ivey Jun 1991 A
5033711 Gregorich et al. Jul 1991 A
5042366 Panetski et al. Aug 1991 A
5060901 Lathrop et al. Oct 1991 A
5078574 Olsen Jan 1992 A
5094676 Karbacher Mar 1992 A
D325628 Cho Apr 1992 S
5107755 Leban et al. Apr 1992 A
5121675 Muller et al. Jun 1992 A
5127876 Howe et al. Jul 1992 A
D328405 Heiligenstein et al. Aug 1992 S
5152606 Borraccia et al. Oct 1992 A
5156568 Ricci Oct 1992 A
5191618 Hisey Mar 1993 A
D335532 Lopez May 1993 S
D337157 Ortiz Jul 1993 S
D340765 Joss et al. Oct 1993 S
5251461 Fallows, III et al. Oct 1993 A
D347467 Medvick May 1994 S
5328152 Castle Jul 1994 A
5358443 Mitchell et al. Oct 1994 A
5399119 Birk et al. Mar 1995 A
5423660 Sortor Jun 1995 A
5429481 Liu Jul 1995 A
5439349 Kupferberg Aug 1995 A
5439352 Line Aug 1995 A
5443625 Schaffhausen Aug 1995 A
5458505 Prager Oct 1995 A
5462484 Jung et al. Oct 1995 A
5466120 Takeuchi et al. Nov 1995 A
5484076 Petrushka Jan 1996 A
5511942 Meier Apr 1996 A
5513953 Hansen May 1996 A
5520515 Bailey et al. May 1996 A
5545241 Vanderauwera et al. Aug 1996 A
5547343 Jané et al. Aug 1996 A
5551841 Kamada Sep 1996 A
5561952 Damron Oct 1996 A
5569019 Katariya et al. Oct 1996 A
5584656 Rose Dec 1996 A
5595068 Amr Jan 1997 A
5613833 Wolfe et al. Mar 1997 A
5658196 Swaim Aug 1997 A
5664872 Spearman et al. Sep 1997 A
D386267 Tickner Nov 1997 S
5709458 Metz Jan 1998 A
5725190 Cuthbertson et al. Mar 1998 A
5725356 Carter Mar 1998 A
5782438 Hubben et al. Jul 1998 A
5791985 Schiedegger et al. Aug 1998 A
5822186 Bull Oct 1998 A
D404617 Mick et al. Jan 1999 S
D407696 Shimazu Apr 1999 S
5918972 Van Belle Jul 1999 A
5934783 Yoshikawa Aug 1999 A
5938527 Oshima et al. Aug 1999 A
D414550 Bloom Sep 1999 S
5947816 Schiedegger et al. Sep 1999 A
5967891 Riley et al. Oct 1999 A
5975853 Lackey Nov 1999 A
5984252 Bograng et al. Nov 1999 A
5997253 Feehan Dec 1999 A
6004097 Wark et al. Dec 1999 A
6068385 Hsieh May 2000 A
D427673 Stout, Jr. Jul 2000 S
6095671 Hutain Aug 2000 A
6109874 Steiner Aug 2000 A
6145798 Janisse et al. Nov 2000 A
6149513 Lyu Nov 2000 A
6155782 Hsu Dec 2000 A
6168517 Cook Jan 2001 B1
6176680 Ringblom et al. Jan 2001 B1
6183203 Grintz Feb 2001 B1
6192702 Shimogori Feb 2001 B1
6193384 Stein Feb 2001 B1
6196915 Schiedegger et al. Mar 2001 B1
D443053 Schaefer May 2001 S
6319304 Moredock Nov 2001 B1
D453960 Shelby et al. Feb 2002 S
6352473 Clark Mar 2002 B1
6357714 Johnson Mar 2002 B1
6360816 Wagner Mar 2002 B1
6361428 Tosconi et al. Mar 2002 B1
6361431 Kawano Mar 2002 B1
6364760 Rooney Apr 2002 B1
D457142 Chang May 2002 S
D457452 Christiansen May 2002 S
D457613 Schaefer May 2002 S
6382911 Beltowski May 2002 B1
6383072 Schiedegger et al. May 2002 B2
6384494 Avidano et al. May 2002 B1
6386828 Davis et al. May 2002 B1
6386970 Vernier, II et al. May 2002 B1
6386972 Schiedegger et al. May 2002 B1
6435964 Chang Aug 2002 B1
6451080 Rocklitz et al. Sep 2002 B1
6458028 Snyder Oct 2002 B2
6458628 Distefano et al. Oct 2002 B1
6484524 Ulanov Nov 2002 B1
D470066 Christiansen Feb 2003 S
D470731 Hipgrave et al. Feb 2003 S
6551185 Miyake et al. Apr 2003 B1
6575011 Busby Jun 2003 B1
6581974 Ragner et al. Jun 2003 B1
6582291 Clark Jun 2003 B2
6592328 Cahill Jul 2003 B1
6595747 Bos Jul 2003 B2
D480132 Stout, Jr. Sep 2003 S
6626003 Kortüm et al. Sep 2003 B1
6626636 Bohn Sep 2003 B2
D481101 Boehrs et al. Oct 2003 S
D481127 Hayamizu Oct 2003 S
D481159 Walker Oct 2003 S
6648752 Vernier, II et al. Nov 2003 B2
6679433 Gordon et al. Jan 2004 B2
6682308 Fei et al. Jan 2004 B1
6700266 Winkel et al. Mar 2004 B2
D489967 Funk May 2004 S
6761531 Toye Jul 2004 B2
6767281 McKee Jul 2004 B2
6783578 Tillman, Jr. Aug 2004 B2
6804627 Marokhovsky et al. Oct 2004 B1
6805627 Marts et al. Oct 2004 B2
6812849 Ancel Nov 2004 B1
D500773 Colson et al. Jan 2005 S
D505627 Py et al. May 2005 S
6886270 Gilmer May 2005 B2
6916240 Morton Jul 2005 B1
6938631 Gridley Sep 2005 B2
6941698 Telles Sep 2005 B2
6951081 Bonshor Oct 2005 B2
6966830 Hurlstone et al. Nov 2005 B2
6974381 Walker et al. Dec 2005 B1
D514688 Avedon Feb 2006 S
7011500 Matson Mar 2006 B2
7011578 Core Mar 2006 B1
7044849 Dippel May 2006 B2
7048499 Mathson et al. May 2006 B2
7056092 Stahl Jun 2006 B2
7056368 Moredock et al. Jun 2006 B2
D525725 Foo Jul 2006 S
7101064 Ancel Sep 2006 B2
D532229 Hoernig et al. Nov 2006 S
7152425 Han et al. Dec 2006 B2
7166023 Haigh et al. Jan 2007 B2
7175309 Craw et al. Feb 2007 B2
7185504 Kasai et al. Mar 2007 B2
7201110 Pawlak Apr 2007 B1
7201650 Demerath et al. Apr 2007 B2
7214035 Bussieres et al. May 2007 B2
7246997 Liu et al. Jul 2007 B2
D552485 Grabiner et al. Oct 2007 S
7287738 Pitlor Oct 2007 B2
7288023 Leopold Oct 2007 B2
D557791 Cox Dec 2007 S
7311492 Östberg Dec 2007 B2
7320636 Seliger et al. Jan 2008 B2
7331764 Reynolds et al. Feb 2008 B1
D564120 Layne et al. Mar 2008 S
D567930 Smith Apr 2008 S
D567961 Yajima Apr 2008 S
7374408 Savage et al. May 2008 B2
D570981 McClelland Jun 2008 S
7381129 Avedon Jun 2008 B2
D578390 Green Oct 2008 S
D582502 Brittingham Dec 2008 S
D583451 Aloe et al. Dec 2008 S
D583452 Aloe et al. Dec 2008 S
7467931 O'Toole Dec 2008 B2
D584786 Brittingham Jan 2009 S
7473074 Herbst et al. Jan 2009 B2
7476079 Bartlett Jan 2009 B2
7484863 Aubrey Feb 2009 B1
7497773 Schmidt Mar 2009 B1
D591382 Brittingham Apr 2009 S
7516578 Bonshor Apr 2009 B2
7544124 Polston Jun 2009 B2
7549258 Lajewski Jun 2009 B2
7566034 Bonshor Jul 2009 B2
D599471 Borovicka et al. Sep 2009 S
D600396 Luinstra Sep 2009 S
7607935 Dahl Oct 2009 B2
D604880 Lovegrove Nov 2009 S
7610717 Lüken et al. Nov 2009 B2
7610726 Lajewski Nov 2009 B2
D605332 Miranda Dec 2009 S
7645188 Peerbolt Jan 2010 B1
7651390 Profeta et al. Jan 2010 B1
D612925 Kameyama et al. Mar 2010 S
7677770 Mazzochette Mar 2010 B2
7677964 Bucher et al. Mar 2010 B1
7708625 Leseman et al. May 2010 B2
7717674 Tsuji et al. May 2010 B2
D617890 Thomas Jun 2010 S
D620096 Underwood Jul 2010 S
7748954 Eguchi et al. Jul 2010 B2
7752814 Bonshor Jul 2010 B2
D621985 Sanoner Aug 2010 S
D622895 Lyons Aug 2010 S
7774999 McKee Aug 2010 B2
7780510 Polston Aug 2010 B2
7785064 Bartholmey et al. Aug 2010 B2
D625855 Franklin Oct 2010 S
D625856 Franklin Oct 2010 S
7849644 Melesky Dec 2010 B2
D630337 Chia et al. Jan 2011 S
D630536 Pettit Jan 2011 S
D631142 Angell Jan 2011 S
D631148 Benton et al. Jan 2011 S
D631579 Franklin Jan 2011 S
D631580 Franklin Jan 2011 S
D631581 Franklin Jan 2011 S
7901278 O'Hagin Mar 2011 B2
7930858 Lajewski Apr 2011 B2
7942627 Jin May 2011 B2
D645550 Ferroni Sep 2011 S
D645561 Herrmann et al. Sep 2011 S
D645593 Janssen Sep 2011 S
8052386 Fitzpatrick et al. Nov 2011 B1
D651709 Zeyfang Jan 2012 S
D651919 Lai et al. Jan 2012 S
D651920 Lai et al. Jan 2012 S
D661902 Italiano Jun 2012 S
8215789 Howard Jul 2012 B2
8282138 Steiner Oct 2012 B2
8297945 Spaggiari Oct 2012 B2
D672863 Romero Carreras Dec 2012 S
D676877 Drenth et al. Feb 2013 S
1053025 Goodwin Feb 2013 A1
8366387 Reuter Feb 2013 B2
D678791 Ford Mar 2013 S
D681184 Romero Carreras Apr 2013 S
D684307 Teller Jun 2013 S
8459846 Tsao Jun 2013 B2
8487517 Fang et al. Jul 2013 B2
8529324 Moredock et al. Sep 2013 B2
8535128 Chwala Sep 2013 B2
8596596 Naji et al. Dec 2013 B2
8616842 Avedon Dec 2013 B2
D698916 Avedon Feb 2014 S
8641375 Tian et al. Feb 2014 B2
D702887 Peiruccelli Apr 2014 S
D703302 Ruck Apr 2014 S
D703579 Kuster et al. Apr 2014 S
D709643 Kohler et al. Jul 2014 S
D710485 Nudo Aug 2014 S
D710490 Shurtleff Aug 2014 S
D711843 Yamazaki et al. Aug 2014 S
D714996 Trotter et al. Oct 2014 S
D715904 Tate et al. Oct 2014 S
8894354 Hodgson et al. Nov 2014 B2
8899930 Innocenti et al. Dec 2014 B2
D721645 Brown Jan 2015 S
8931936 Tham et al. Jan 2015 B1
D722486 Wang Feb 2015 S
D724199 Bambot et al. Mar 2015 S
D725053 Kaneko et al. Mar 2015 S
D725055 Yamazaki et al. Mar 2015 S
8967983 Kampf Mar 2015 B2
8992174 Chang Mar 2015 B2
D730185 Blanco et al. May 2015 S
9028085 Todd, Jr. May 2015 B2
9028211 Todd, Jr. May 2015 B2
D731030 Tyler Jun 2015 S
D733555 Brady et al. Jul 2015 S
D739223 Paik et al. Sep 2015 S
D739515 Johnson et al. Sep 2015 S
D739832 Yamazaki et al. Sep 2015 S
D740973 Gonzalez Oct 2015 S
9151295 Avedon Oct 2015 B2
D742508 Row et al. Nov 2015 S
D742563 Kasha Nov 2015 S
D743521 Jackson Nov 2015 S
D746416 Barlar Dec 2015 S
D746971 Avedon Jan 2016 S
D747453 Stewart et al. Jan 2016 S
D752339 Hoover Mar 2016 S
D753817 Maguire et al. Apr 2016 S
D753818 Maguire et al. Apr 2016 S
D754312 Ellis Apr 2016 S
D755438 Kimmet May 2016 S
D756494 Gledhill et al. May 2016 S
D756498 Norman et al. May 2016 S
9335061 Avedon May 2016 B2
D758642 Eguchi Jun 2016 S
D760384 Niunoya et al. Jun 2016 S
D761419 Fitzgerald et al. Jul 2016 S
D766098 Seo Sep 2016 S
D766100 Jung Sep 2016 S
D768844 Koseoglu Oct 2016 S
9459020 Avedon Oct 2016 B2
D772531 Troia Nov 2016 S
D774689 Terumichi Dec 2016 S
D775719 Smith et al. Jan 2017 S
D777311 Chen Jan 2017 S
D783795 Avedon Apr 2017 S
9631627 Avedon Apr 2017 B2
D788886 Salzer Jun 2017 S
D788953 Khan Jun 2017 S
9696026 Hardgrave Jul 2017 B1
9702576 Avedon Jul 2017 B2
9714663 Avedon Jul 2017 B1
D794198 Mizumura et al. Aug 2017 S
D794199 Mizumura et al. Aug 2017 S
D798718 Foster et al. Oct 2017 S
D799014 Suarez et al. Oct 2017 S
D799675 Wong Oct 2017 S
D800174 Ghalsasi et al. Oct 2017 S
D801510 O'Connett et al. Oct 2017 S
D801545 Wiesli et al. Oct 2017 S
D803381 Kim et al. Nov 2017 S
D805176 Avedon Dec 2017 S
D818185 Wilson May 2018 S
9970457 Avedon May 2018 B2
D820967 Avedon Jun 2018 S
10024531 Avedon Jul 2018 B2
D824716 Elgamil et al. Aug 2018 S
D825090 Richardson et al. Aug 2018 S
D831484 Jung et al. Oct 2018 S
D835265 Inoue Dec 2018 S
D836238 Ericson, Jr. et al. Dec 2018 S
D838379 Trump Jan 2019 S
10184489 Avedon Jan 2019 B2
D840009 Suarez et al. Feb 2019 S
D841452 Conselvan Feb 2019 S
D844126 Sheng et al. Mar 2019 S
D844128 Li Mar 2019 S
10221861 Avedon Mar 2019 B2
D845461 Li Apr 2019 S
D845462 Li Apr 2019 S
D847967 Hernandez et al. May 2019 S
D848295 Johnson et al. May 2019 S
D850727 Petruccelli Jun 2019 S
D852143 Ku Jun 2019 S
D853017 Rioux et al. Jul 2019 S
D861979 Sibley Oct 2019 S
D862795 Caldas Oct 2019 S
D865223 Spork et al. Oct 2019 S
D865907 Wagner Nov 2019 S
D868254 Lintula et al. Nov 2019 S
10487840 Avedon Nov 2019 B2
10487852 Avedon Nov 2019 B2
D869275 Taunk Dec 2019 S
D870778 Johnson Dec 2019 S
D871535 Ferrer Dec 2019 S
D872911 Chen Jan 2020 S
D877917 Schill Mar 2020 S
D880098 Harrison et al. Mar 2020 S
D881374 Schoettle Apr 2020 S
D885550 Avedon May 2020 S
10641506 Avedon May 2020 B2
10655841 Avedon May 2020 B2
D886275 Avedon Jun 2020 S
D887541 Avedon Jun 2020 S
10724542 Avedon Jul 2020 B2
D895784 Wang Sep 2020 S
11053948 Avedon Jul 2021 B2
D926963 Avedon Aug 2021 S
11092330 Avedon Aug 2021 B2
11105341 Avedon Aug 2021 B2
11221153 Avedon Jan 2022 B2
11236766 Avedon Feb 2022 B2
D953517 Belozerova et al. May 2022 S
11365743 Avedon Jun 2022 B2
11421710 Avedon Aug 2022 B2
20010049927 Toepel Dec 2001 A1
20020045420 Taillon Apr 2002 A1
20020131865 Larzelere et al. Sep 2002 A1
20020137454 Baker Sep 2002 A1
20030026691 Huang et al. Feb 2003 A1
20030092373 Kuo May 2003 A1
20030213883 Fu-Liang Nov 2003 A1
20040004173 Johnson Jan 2004 A1
20040050077 Kasai et al. Mar 2004 A1
20040052641 Chen Mar 2004 A1
20040240214 Whitlow et al. Dec 2004 A1
20040253095 Sasaki et al. Dec 2004 A1
20050045793 Johnson et al. Mar 2005 A1
20050077446 Bacon et al. Apr 2005 A1
20050092888 Gonce May 2005 A1
20050159101 Hrdina et al. Jul 2005 A1
20060087810 Rockenfeller Apr 2006 A1
20060146542 Sullivan Jul 2006 A1
20060172688 Johnson Aug 2006 A1
20060193139 Sun et al. Aug 2006 A1
20060276123 Sanagi et al. Dec 2006 A1
20060278766 Wang Dec 2006 A1
20060284435 Vitito Dec 2006 A1
20070213003 Railkar et al. Sep 2007 A1
20070231145 Jin Oct 2007 A1
20070246579 Blateri Oct 2007 A1
20070297906 Wu Dec 2007 A1
20070297912 Reuter Dec 2007 A1
20080019836 Butz et al. Jan 2008 A1
20080061200 Bouissiere Mar 2008 A1
20080188175 Wilkins Aug 2008 A1
20080227381 Avedon Sep 2008 A1
20090041580 Wichmann et al. Feb 2009 A1
20090122516 Yang May 2009 A1
20090155080 Yu Jun 2009 A1
20090170421 Adrian et al. Jul 2009 A1
20090219727 Weaver Sep 2009 A1
20090262550 Inoue Oct 2009 A1
20100009621 Hsieh Jan 2010 A1
20100052495 Liu et al. Mar 2010 A1
20100075588 Haneline Mar 2010 A1
20100111698 Wiedman et al. May 2010 A1
20100176706 Fu et al. Jul 2010 A1
20100192611 Yamaguchi et al. Aug 2010 A1
20100202932 Danville Aug 2010 A1
20100232168 Horng Sep 2010 A1
20100295436 Horng et al. Nov 2010 A1
20100328881 Huang Dec 2010 A1
20100329885 Criner et al. Dec 2010 A1
20110037368 Huang Feb 2011 A1
20110057551 Lee et al. Mar 2011 A1
20110057552 Weaver Mar 2011 A1
20110080096 Dudik et al. Apr 2011 A1
20110084586 Lain et al. Apr 2011 A1
20110133622 Mo et al. Jun 2011 A1
20110140588 Chen Jun 2011 A1
20110223016 Ediger et al. Sep 2011 A1
20110228967 Kulchy et al. Sep 2011 A1
20120060453 Holzmann et al. Mar 2012 A1
20120062095 Horng Mar 2012 A1
20120194054 Johnston Aug 2012 A1
20120195749 Avedon Aug 2012 A1
20130111721 Mahfoudh et al. May 2013 A1
20130196588 Liao Aug 2013 A1
20140314560 Avedon Oct 2014 A1
20140348634 Bourrilhon et al. Nov 2014 A1
20150021013 Batarseh Jan 2015 A1
20150176834 Avedon Jun 2015 A1
20160107200 Al-Shafei et al. Apr 2016 A1
20160146222 Avedon May 2016 A1
20170370363 Avedon Dec 2017 A1
20180149161 Avedon May 2018 A1
20180149380 Avedon May 2018 A1
20180335049 Gu et al. Nov 2018 A1
20190010961 Kumaou Jan 2019 A1
20190011121 Avedon Jan 2019 A1
20200166053 Avedon May 2020 A1
20200217530 Avedon Jul 2020 A1
20200232470 Avedon Jul 2020 A1
20200333027 Avedon Oct 2020 A1
20210007449 Udagawa Jan 2021 A1
20210040960 Shih et al. Feb 2021 A1
20210277914 Lu et al. Sep 2021 A1
20210348617 Avedon Nov 2021 A1
20210396248 Gao Dec 2021 A1
20220042522 Avedon Feb 2022 A1
20220120469 Doat et al. Apr 2022 A1
20230055245 Avedon Feb 2023 A1
Foreign Referenced Citations (49)
Number Date Country
2013203632 Nov 2016 AU
1426729 Jul 2003 CN
101592328 Dec 2009 CN
201560963 Aug 2010 CN
44 13 542 Oct 1995 DE
196 38 518 Apr 1998 DE
10 2008 044874 Mar 2010 DE
0 037 958 Oct 1981 EP
0 212 749 Mar 1987 EP
0 772 007 May 1997 EP
2 248 692 Nov 2010 EP
0 715 101 Nov 1931 FR
2 784 423 Apr 2000 FR
190617978 May 1907 GB
0 792 369 Mar 1958 GB
0 824 390 Nov 1959 GB
0 981 188 Jan 1965 GB
1 251 880 Nov 1971 GB
2 344 619 Jun 2000 GB
2 468 504 Sep 2010 GB
55-032965 Mar 1980 JP
61-502267 Oct 1986 JP
01-067548 Mar 1989 JP
07-167097 Jul 1995 JP
07-253231 Oct 1995 JP
08-219939 Aug 1996 JP
11-132543 May 1999 JP
2001-193979 Jul 2001 JP
2002-349489 Dec 2002 JP
2006-350237 Dec 2006 JP
2010-181124 Aug 2010 JP
20-0176664 Apr 2000 KR
2003-0025428 Mar 2003 KR
10-1255739 Apr 2013 KR
2400254 Sep 2010 RU
M337636 Aug 2008 TW
WO 01034983 May 2001 WO
WO 03040572 May 2003 WO
WO 2005091896 Oct 2005 WO
WO 2006078102 Jul 2006 WO
WO 2008062319 May 2008 WO
WO 2010046536 Apr 2010 WO
WO 2010114702 Oct 2010 WO
WO 2011067430 Jun 2011 WO
WO 2012174155 Dec 2012 WO
WO 2012174156 Dec 2012 WO
WO 2015187856 Dec 2015 WO
WO 2016081693 May 2016 WO
WO 2020214729 Oct 2020 WO
Non-Patent Literature Citations (3)
Entry
“Airius Model R20 EC ‘Eyeball’ Data Sheet”, http://airius.com.au/products/new-retail-series-2/attachment/na_std_retailseries/ published Jun. 15, 2016 as printed May 23, 2017 in page 1.
Keeler Hardware, “OC Oval Cylinder Escutcheon”, https://www.keelerhardware.com.au/products/oc-oval-cylinder-escutcheon as printed Nov. 13, 2017 in 3 pages.
“The New Airius Q50 EC”, https://web.archive.org/web/20150721185407/http://airius.com.au/technical/specification-sheets/the-new-airius-q50-ec/ as archived Jul. 21, 2015, pp. 2.
Related Publications (1)
Number Date Country
20220220975 A1 Jul 2022 US
Provisional Applications (1)
Number Date Country
62008776 Jun 2014 US
Continuations (3)
Number Date Country
Parent 16926269 Jul 2020 US
Child 17646053 US
Parent 16250426 Jan 2019 US
Child 16926269 US
Parent 14729905 Jun 2015 US
Child 16250426 US