Columns for chromatograph

Information

  • Patent Application
  • 20050023204
  • Publication Number
    20050023204
  • Date Filed
    July 19, 2004
    20 years ago
  • Date Published
    February 03, 2005
    20 years ago
Abstract
An object of the present invention is to provide a column for chromatograph having a structure for enabling the separation of a sample and for maintaining a high resolution of separation. The present invention provides a column 3 for chromatograph having a honeycomb substrate 1 having a hole 1a for flowing a sample and a separation phase 2 filled in the holes 1a. Preferably, the separation phase 2 comprises a porous bone structure composed of an inorganic material and with open pores formed therein, and the porous bone structure is generated by sol-gel transition accompanied by phase transition.
Description

This application claims the benefit of Japanese Patent Application P2003-203519, filed on Jul. 30, 2003, the entirety of which is incorporated by reference. BACKGROUND OF THE INVENTION


1. Technical field of the Invention


The present invention relates to a column for chromatograph.


2. Related Art Statement


According to a multi-capillary column described in Japanese Patent publication 61-265567A, many capillaries each composed of a hollow fiber are bundled and bonded with each other by an adhesive to form a cylindrical article. It is thus possible to maintain the characteristic high performance of separation of a capillary column without causing diffusion into multi flow routes. The analysis can be made by means of a common HPLC system at the same time.


It is also known to manufacture porous bodies of silica using sol-gel process applying phase separation with a high reproducibility (see Japanese Patent 2123708B and Japanese Patent publication 3-285833A). According to the method, the uniformity of the shape and size distribution of holes can be considerably improved. It is also possible to form small holes each having a relatively large diameter. It is further described that the porous body is used as a separation phase of a column in Japanese Patent 3317749B.


SUMMARY OF THE INVENTION

According to a column described in Japanese Patent publication 61-265567A, it is necessary to increase the number of the capillaries and bundle and bond many capillaries with each other by an adhesive, for improving the amount of a sample fluid subjected to processing and for utilizing a common HPLC system. It is, however, difficult to bundle many capillaries in parallel with each other and then to bond them while their longitudinal directions are aligned to the same axis. That is, each of the capillaries is not directly clamped, so that the longitudinal direction of each capillary is easily deviated from and inclined with respect to the axis. An excessive pressure may be thus applied onto each capillary so that the capillaries are easily deformed, curved, tipped and broken. The passing time of the sample solution in the capillaries may not be uniform and the sample solution may be leaked before the separation. The resolution of the separation of the column tends to be reduced.


An object of the present invention is to provide a column for chromatograph having a structure for enabling the separation of a sample, analysis by means of a common HPLC system and superior resolution of separation.


The present invention provides a column for chromatograph comprising a honeycomb substrate comprising a hole for flowing a sample formed therein and a separation phase filled in the hole.


The advantages of the column for chromatograph according to the present invention will be described below. That is, for example as shown in a schematic cross sectional view of FIG. 1, a separation phase 2 is filled in holes la for flowing a sample of a honeycomb substrate 1. The sample is supplied into the inlet 1b of each hole 1a, as an arrow “C”, to discharge separated component from each outlet 1c as an arrow “D”, so that the separated component is analyzed by means of a detector. According to the column for chromatograph having the above structure, the pore size of each hole 1a can be designed as a sufficiently small value for preventing the diffusion of the sample into multi flow routes. In addition to this, it is possible to improve the amount of the sample and analyze the sample using a common HPLC system, by increasing the number of the holes la for flowing a sample.


Moreover, according to the honeycomb substrate 1, it is possible to reduce the deterioration of resolution of separation efficiency even when the whole of the honeycomb substrate 1 is curved or deformed as arrows “A” and “B”. That is, when the whole of the honeycomb substrate is curved or deformed, all the holes la for flowing sample are similarly curved or deformed. The sample is thus flown in the holes in the substantially similar manner as in the honeycomb substrate not curved or deformed.


Contrary to this, when many capillaries 11 are bundled as a column 10 shown in FIG. 2, some capillaries 11A inevitably tend to be inclined. As a result, a time period required for passage of a sample in capillaries held in parallel with each other is made different from that of a sample in the inclined capillaries, so that the resolution of separation is reduced. Moreover, spacings of adjacent capillaries tend to be not constant, so that an excess pressure is applied on a part of the bundled capillaries to cause tipping or breakage of the capillaries.


These and other objects, features and advantages of the invention will be appreciated upon reading the following description of the invention when taken in conjunction with the attached drawings, with the understanding that some modifications, variations and changes of the same could be made by the skilled person in the art.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a longitudinal cross sectional view schematically showing a column for chromatograph according to an embodiment of the present invention.



FIG. 2 is a front view schematically showing a column 10 produced by bundling capillaries.



FIG. 3 is a photograph taken by an electron microscope showing a cross section of a column according to one embodiment of the present invention.



FIG. 4 is an enlarged photograph showing the inside of a hole for flowing a sample shown in FIG. 3.



FIG. 5 is an enlarged photograph showing a part of FIG. 4.




BEST MODES FOR CARRYING OUT THE INVENTION

The present invention will be described further in detail below.


The material of the honeycomb substrate is not particularly limited, and may be a ceramics, a metal, a glass, a polymer or a ceramic-metal composite material. The following materials may preferably be used. It is preferred an inorganic oxide such as silicon oxide, aluminum oxide, titanium oxide, zirconium oxide and so on, a ceramics such as silicon carbide, silicon nitride and so on, or a material used for a substrate for a column such as stainless steel and PEEK resin.


The pore size of the hole for flowing sample formed in the honeycomb substrate is not particularly limited. As the pore size of the hole for flowing sample is smaller, the diffusion of the sample into many flow routes in the separation phase can be reduced and the resolution of separation can be improved. On the viewpoint, the pore size for flowing a sample may preferably be 1 mm or smaller. Further, the pore size of the holes for flowing a sample formed in the honeycomb substrate may preferably be 0.05 mm or larger, so that the amount of the sample can be increased at a small number of the holes for flowing a sample.


Any kinds of samples may be used as far as the sample is commonly used for liquid phase chromatograph.


The material for the separation phase filled in the holes for flowing a sample is not particularly limited, and may be the followings. It is considered an organic polymer such as styrene-divinyl benzene copolymer or the like and an inorganic particle filler such as silica gel.


Particularly preferably, the separation phase is made of a porous skeleton structure generated by sol-gel transition accompanied by phase transition. For performing the reaction, a solution containing a precursor of a network-forming component is produced, the precursor in the solution is then reacted, for example hydrolyzed, to generate sol, and the sol is gelled (solidified). The process is called “sol-gel transition”. Phase transition of a phase rich in the network-forming component for causing gellation (gel phase) and a phase rich in a solvent component irrelevant of gellation (solvent phase) is induced parallel to sol-gel transition. As a result, the gel forms a network like structure, so that the solvent phase is dried to remove the solvent to obtain the porous body having the open pores.


In the sol-gel reaction system, phase separation occurs as time passes by. That is, the system is separated to a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component irrelevant of the gel formation (solvent phase). In the formation of the phases, each component is diffused inversely with respect to the gradient of concentration based on a difference of chemical potential as the driving force. The movement of substances is continued until each phase reaches an equilibrium composition specified at a given temperature and pressure.


After the sol-gel transition reaction is terminated in the solvent, the resulting wet gel is washed or the solvent is exchanged with another solvent. The solvent is then removed to obtain an inorganic porous composite body. If required, the inorganic porous composite body may be heat treated at an appropriate temperature.


When the separation phase is made of a porous skeleton structure generated by sol-gel transition accompanied by phase transition, the porous skeleton structure has open pores whose pore size and porosity are properly controlled. A pressure depression in the separation phase can be thereby reduced.


The pore size (diameter) of the open pores of the porous skeleton structure may preferably be 500 nm or more, for reducing the pressure depression of the separation phase used as a column. Such macropores are formed in a region occupied by the solvent phase generated in the phase separation process. When a so-called co-continuous structure, in which the solvent and gel phases are both interconnected, respectively, a considerably sharp size distribution can be obtained.


The porous skeleton structure may be made of an inorganic material not particularly limited. A metal oxide is particularly preferred. Silicon oxide and titanium oxide may be listed as the metal oxide.


The precursor for the network-forming component for causing gellation in the sol-gel reaction includes the followings.

    • (1) A metal alkoxide, a metal complex, a metal salt, a metal alkoxide modified with an organic substance, a metal alkoxide with cross linked organic substance, or an organic metal alkoxide organic replaced with an alkyl group
    • (2) A partially hydrolyzed product of a metal alkoxide, a metal complex, a metal salt, a metal alkoxide modified with an organic substance, a metal alkoxide with cross linked organic substance, or an organic metal alkoxide replaced with an alkyl group
    • (3) A polymer product of partial polymerization of a metal alkoxide, a metal complex, a metal salt, a metal alkoxide modified with an organic substance, a metal alkoxide with cross-linking organic substance, or an organic metal alkoxide partly substituted with an alkyl group
    • (4) Sol-gel transition by means of changing the pH of water glass or aqueous solution of the other silicate


Further in a more specific manufacturing process, a water soluble polymer is dissolved in an acidic aqueous solution. The precursor, more preferably a metal compound having a hydrolyzable functional group, is then added to the solution to perform hydrolysis. The degree of polymerization of the precursor of the network-forming component is gradually increased so that the miscibility between the gel phase containing the network-forming component and solvent phase containing water as the main component, or solvent phase containing a water soluble polymer as the main component is reduced. During the process, spinodal decomposition is induced parallel to gellation which is proceeded by the hydrolysis and polymerization of the network-forming component in the solvent. The product is then dried and heated.


Any water soluble polymer may be used, as far as it may be used for producing an aqueous solution having an appropriate concentration and may be uniformly dissolved into a reaction system containing an alcohol generated from a metal compound having a hydrolyzable functional group. Specifically, it is preferred the sodium salt or potassium salt of polystyrene sulfonate as the metal salt of a polymer; polyacrylic acid as an acid of a polymer dissociated to generate a polyanion; polyallyl amine and polyethylene imine as the base of a polymer dissociated to generate a polycation; polyethylene oxide as a neutral polymer having an ether bond in the main chain; or polyvinyl pyrrolidone or the like. Further, instead of the organic polymer, formamide, a polyalcohol, and a surfactant may be used. In this case, glycerin as the polyalcohol and polyoxyethylene alkyl ether as the surfactant are most preferred.


The metal compound having a hydrolyzable functional group may be a metal alkoxide or the oligomer. The alkoxide or oligomer may preferably have an alkyl group having a small number of carbon atoms such as methoxy, ethoxy, propoxy group or the like. The metal therefor is that constituting the metal oxide to be finally produced, such as Si, Ti, Zr or Al. One or more metals may be used. On the other hand, the oligomer may be uniformly dissolved or dispersed in an alcohol and specifically the number of repetition may be up to about 10. Further, an alkyl alkoxy silane in which some of the alkoxy groups in a silicon alkoxide are replaced with an alkyl group, and the oligomer having a repetition number up to about 10 may be preferably used. Further, a metal alkoxide replaced with alkyl group containing titanium or the like as the main metal element instead of silicon may be used.


Further, the acidic aqueous solution may preferably be 0.001 N or more of a mineral acid, normally hydrochloric acid, nitric acid or the like, or 0.01 N or more of an organic acid such as formic acid, acetic acid or the like.


The hydrolysis and polymerization reactions can be performed by holding the solution at a temperature of room temperature to 40 or 80° C. at 0.5 to 5 hours. The gellation and phase separation may be caused during the process.


An enzyme such as glucose isomerase or the like, a catalyst such as platinum, palladium or the like, or a functional group such as octadecyl group or the like may be supported with the separation phase of the column according to the present invention. The inventive column may be appropriately utilized for a column for a liquid phase chromatograph.


EXAMPLES

5 weight parts of polyvinyl alcohol as a binder was added to 100 weight parts of alumina powder having an average grain diameter of 2 μm and blended with a blender to obtain clay (slurry). The clay was then supplied into an extruder for extrusion at a rate of 10 mm/sec to obtain an elongate body, which was cut at a length of 100 mm each to obtain shaped bodies. The shaped body was introduced into a drier and dried at 120° C. for 10 minutes to obtain a shaped body (dried body) having an outer diameter φ of 2.0 mm and 19 holes each having a pore size φ of 0.2 mm.


The thus obtained shaped body was sintered according to the following temperature schedule. That is, the temperature was elevated to 200° C. in 1 hour, held at 200° C. for 1 hour, elevated to 300° C. in 1 hour, elevated to 1600° C. in 6 hours, held at 1600° C. for 2 hours for sintering and cooled naturally to room temperature. The resulting sintered body was then removed.


Finally, the thus obtained sintered body was file finished at both end faces and the wastes were removed to obtain a finished body.


(Generation of Separation Phase in Holes for Flowing a Sample)


0.9 g of polyethylene oxide (supplied by Aldrich Co.) as the water soluble polymer and 1.2 g of urea were uniformly dissolved in 10 ml of 0.01 mol/L acetic acid solution to obtain a solution. After that, the solution was stirred for 10 minutes under cooling with ice, and 5 ml of tetramethoxysilane (a precursor for a network-forming component: supplied by Shin-Etsu Chemical Co., Ltd.) was added under stirring to perform hydrolysis. The thus obtained transparent solution was filled into the holes for flowing a sample. The honeycomb substrate was then held in a constant temperature bath at 40° C. until the solution was solidified. The thus obtained gel was aged for about 24 hours at 40° C. The honeycomb substrate was then held at 110° C. for 4 hours and then dried at 60° C. to evaporate and remove the solvent. After the honeycomb substrate was heat treated at 800° C. to decompose organic substances, silica constituting the separation phase was chemically modified with octadecyl group to obtain a column according to the present invention.



FIG. 3 shows a photograph (at a magnitude of 50) taken by an electron microscope of a cross section of the thus obtained column according to the present invention. The column of the present example had 19 holes for flowing a sample. A porous body was generated in each of the holes. FIG. 4 is a photograph showing an enlarged view of the inside of the hole for flowing a sample (at a magnitude of 500). It is observed a microstructure in which silica is continuously formed to network-like or dendritic form. It was further proved that considerably large pores are uniformly formed. FIG. 5 is a photograph showing an enlarged view of a part of FIG. 4 (at a magnitude of 2000).


(Experiment of Separation of Sample Component)


A liquid chromatograph system was equipped with the thus obtained column. Mixed solution of nitrobenzene and toluene was selected as a sample solution and added as the moving phase. The sample solution was flown into the column, and it was proved that the peaks of nitrobenzene and toluene can be separated.


As described above, the present invention provides a column for chromatograph having a structure for enabling the separation of a sample and for maintaining a high resolution of separation.


The present invention has been explained referring to the preferred embodiments, however, the present invention is not limited to the illustrated embodiments which are given by way of examples only, and may be carried out in various modes without departing from the scope of the invention.

Claims
  • 1. A column for chromatograph comprising a honeycomb substrate comprising a hole for flowing a sample and a separation phase filled in said hole.
  • 2. The column for chromatograph of claim 1, wherein said separation phase comprises a porous skeleton structure composed of an inorganic material and with open pores formed therein, and wherein said porous skeleton structure is generated by sol-gel transition accompanied by phase transition.
  • 3. The column for chromatograph of claim 2, wherein said inorganic material comprises silica.
Priority Claims (1)
Number Date Country Kind
P2003-203519 Jul 2003 JP national