A huge market exists for hard disk drives for mass-market computer systems such as servers, desktop computers, laptop computers, and mobile computers (e.g., mobile devices, PDAs, cell phones, etc.). To be competitive in this market, a hard disk drive should be relatively inexpensive, and should accordingly embody a design that is adapted for low-cost mass production. Further, there exists substantial competitive pressure to continually develop hard disk drives that have increasingly higher storage capacity, that provide for faster access to data, and at the same time conform to decreasingly smaller exterior sizes and shapes often referred to as “form factors.” Satisfying these competing constraints of low-cost, small size, high capacity, and rapid access requires innovation in each of the numerous components and methods of assembly. Typically, the main assembly components of a hard disk drive are a head disk assembly (“HDA”) and a printed circuit board assembly (“PCBA”).
The HDA typically includes at least one magnetic disk (“disk”), a spindle motor for rotating the disk, and a head stack assembly (“HSA”) that includes a head with at least one transducer for reading and writing data. The HSA is controllably positioned by a servo system in order to read or write information from or to particular tracks on the disk. The typical HSA has three primary portions: (1) an actuator assembly that moves in response to the servo control system; (2) a head gimbal assembly (“HGA”) that extends from the actuator assembly and biases the head toward the disk; and (3) a flex cable assembly that provides an electrical interconnect with minimal constraint on movement. The PCBA typically includes signals for processing signals and controlling operations. Within the HDA, the spindle motor rotates the disk or disks, which are the media to and from which the data signals are transmitted via the head of the HGA. Further, many hard disk drive include more than one disk and there may be multiple HGAs with read/write heads for reading from or writing to each disk surface. A typical disk drive may have an array of HGAs with read/write heads arranged in opposing pairs
For disk drive manufacturing, the HSA may be shipped together with a shipping comb that separates and protects the heads of the HGAs prior to the integration of the HSA into the HDA to assemble the disk drive. In the manufacture of a disk drive with a ramp design, the HGAs need to be loaded or merged into a ramp of the disk drive. In particular, the HGAs may include lift tabs that need to be loaded into the ramp and that may be used for sliding on ramp lanes.
One method of loading the lift tabs of the HGAs into the ramp during the disk drive assembly process is by utilizing a comb gripper that rotates the shipping comb and the actuator arms such that the lift tabs and HGAs are loaded into the ramp. However, damage may occur to the HGAs if they are not adequately vertically aligned with the ramp. In particular, collisions may occur between the lift tabs and the HGAs and the ramp during the merge process. For example, the collision may be caused by the lift tab's height traveling lower than it nominal height when the shipping comb first contacts the comb gripper. Existing comb grippers may unfortunately touch the comb tower of the shipping comb at an angle causing angled motion of the shipping comb which results in the tilting of the shipping comp. This tilting may result in the lift tabs and the HGAs being forced downwards such that they may collide with the ramp resulting in a bent lift tab and/or head damage. Unfortunately, once the HGA or lift tab is damaged, the HSA typically needs to be scrapped which may amount to costly yield losses in the disk drive manufacturing process.
Under non-operating conditions the HGAs 118 may be parked on a ramp 120, for example, to avoid contact with disks 46 when it is not spinning. During disk drive operation, the rotary actuator 110 moves heads of the HGAs 118 over the disks 46. The rotary actuator 110 may be part of a head stack assembly (HSA). Electrical signals to/from HGAs 118 are carried to other drive electronics, in part via a flex cable (not shown) and a flex cable bracket 116. The HSA 115 may comprise the actuator 110, the HGA 118, the flex cable. It should be appreciated that HSAs and rotary actuators are well known in the art, and this is but one example.
Looking at this particular example, rotary actuator 110 includes a body portion 155 having a pivot bore for receipt of a pivot bearing cartridge 154. The actuator arm 114 is cantilevered from the body portion 155 and a coil assembly (not shown) is cantilevered from the body portion 155 at an opposite direction from the actuator arm 114 for use by the voice coil motor 112 that rotates the actuator 110. The actuator arm(s) 114 supports HGAs 118 each of which supports a head for writing and reading data to and from the disks 46, respectively. It should be appreciated that many other types of actuators may be utilized, and this is just one example. Furthermore, this is just one example of a hard disk drive (HDD) 10, and a wide variety of different types of disk drives may be utilized with embodiments of the invention.
As can be seen in
The components of the shipping comb 170, ramp 120, and the comb gripper, will be described in more detail in the following paragraphs with reference to the following figures.
With additional reference to
With additional reference to
With additional reference to
Comb gripper 300 includes an actuator 330 to move the first and second gripper fingers 310 and 320 to grip the comb tower 174 of shipping comb 170 to push the comb tower 174 and the shipping comb 170 such that the HSA 115 is rotated and the HGAs 118 are coupled to the ramp 120. It should be appreciated that actuator 330 may be an electronic actuator, a pneumatic actuator, a liquid based actuator, or any type of suitable actuator known to those skilled in the art. In particular, actuator 330 may be configured to move the protruding portion 316 of the first gripper finger 310 to contact the comb tower 174 and to push the comb tower 174 and the shipping comb 170 such that the HSA is rotated and the HGAs 118 are coupled to the ramp 120.
With additional reference to
As an example, the protruding portion 316 of the first gripper finger 310 may protrude approximately 1 millimeter from the remainder of the first gripper finger 310 and is approximately 1 millimeter thick. Correspondingly, the protruding portion 317 of the second gripper finger 320 may likewise protrude approximately 1 millimeter from the remainder of the second gripper finger 320 and is approximately 1 millimeter thick. Other dimensions are possible in other embodiments.
The first and second gripper fingers 310 and 320 may be formed by milling one millimeter thick material along the inner walls of the first and second gripper fingers 310 and 320 leaving 1 millimeter first and second protruding portions 316 and 317 at their bottom ends. These first and second protruding portions 316 and 317 serve to reduce the contact surface area and bring down the overall contact area between the gripper fingers 310 and 320 and the comb tower 174. The lowering of the contact area between the gripper fingers 310 and 320 and the comb tower 174 reduces comb tilting. Moreover, having the additional modification of the 159° chamfered section 340 of the first gripper finger 310 serves to create a parallel surface contact between the first gripper finger 310 with the comb tower 174 upon initial contact, as will be described, also reducing comb tilting. This type of interaction between the gripper fingers 310 and 320 and the comb tower 174 of the shipping comb 170 will be hereinafter described in more detail.
With additional reference to
For example, with particular reference to
As can be particularly seen in
Thus, comb gripper 300 allows for the merging of the HGAs 118 and lift tabs 119 onto the ramp 120 without comb tilting such that the HGAs and lift tabs are not damaged by hitting the ramp garages 262 or other areas of the ramp 120 during merger to the ramp 120. Further, at this point, HGAs 118 and lift tabs 119 are fully are engaged and transferred to the ramp 120 such that the heads have been transferred to the disk drive for operation. It should be appreciated that other lift tabs, HGAs, and actuator arms are not shown for ease of reference.
With reference to
Next, with reference to
Next, with reference to
Thus, according to the embodiments of the invention, by utilizing the previously-described comb gripper 300 having first and second gripper fingers 310 and 320 that include first and second protruding portions 316 and 317, the overall contact area between the gripper fingers 310 and 320 and the comb tower 174 is reduced during the movement of the shipping comb 170 such that when the shipping comb 170 engages the ramp 120 to transfer the HGAs 118 and the lift tabs 119 onto the ramp 120, comb tilting is reduced or non-existent in the merging process. Thus, the comb gripper 300 allows for the merging of the HGAs 118 and lift tabs 119 onto the ramp 120 with little or non-existent comb tilting such that the HGAs 118 and lift tabs 119 are not damaged during merger to the ramp 120 by crashing into the garage ramps 262 or other portions of the ramp 120. This is advantageous because when the HGAs 118 or the lift tabs 119 are damaged in the merging process during manufacturing, typically the whole head stack assembly (HSA) 115 needs to be completely replaced, and the HSA is typically the most expensive single item of the hard disk drive.
While embodiments of the invention and their various mechanical, electromechanical, electrical components have been described in particular embodiments, it should be appreciated that the embodiments can be implemented with a wide variety of differing mechanical, electromechanical, and electrical components, and combinations thereof. Further, although the previous embodiments have been described as being employed for use with disk drives, these embodiments may be implemented with numerous other types of disk drives or other types of storage devices with similar or other media format characteristics.
Number | Name | Date | Kind |
---|---|---|---|
4851943 | Perry | Jul 1989 | A |
5482164 | Karns | Jan 1996 | A |
5826325 | Price et al. | Oct 1998 | A |
5984104 | Schott et al. | Nov 1999 | A |
6049973 | Frank, Jr. et al. | Apr 2000 | A |
6344950 | Watson et al. | Feb 2002 | B1 |
6452753 | Hiller et al. | Sep 2002 | B1 |
6467153 | Butts et al. | Oct 2002 | B2 |
6577473 | Macpherson et al. | Jun 2003 | B1 |
6651192 | Viglione et al. | Nov 2003 | B1 |
6657801 | Chue et al. | Dec 2003 | B1 |
6687093 | Butler et al. | Feb 2004 | B1 |
6751041 | Codilian et al. | Jun 2004 | B1 |
6788480 | Codilian et al. | Sep 2004 | B1 |
6791782 | Codilian et al. | Sep 2004 | B1 |
6792669 | Codilian | Sep 2004 | B2 |
6798592 | Codilian et al. | Sep 2004 | B1 |
6862154 | Subrahmanyam et al. | Mar 2005 | B1 |
6894861 | Codilian et al. | May 2005 | B1 |
6897393 | Codilian et al. | May 2005 | B1 |
6898044 | Chheda | May 2005 | B1 |
6941642 | Subrahmanyam et al. | Sep 2005 | B1 |
6943972 | Chue et al. | Sep 2005 | B1 |
6966107 | Jones | Nov 2005 | B2 |
7003626 | Chheda et al. | Feb 2006 | B1 |
7027242 | Terrill et al. | Apr 2006 | B1 |
7046467 | Chheda | May 2006 | B1 |
7058759 | Reiser et al. | Jun 2006 | B1 |
7072129 | Cullen et al. | Jul 2006 | B1 |
7076391 | Pakzad et al. | Jul 2006 | B1 |
7076603 | Chheda | Jul 2006 | B1 |
7136242 | Chue et al. | Nov 2006 | B1 |
7139145 | Archibald et al. | Nov 2006 | B1 |
7145744 | Clawson et al. | Dec 2006 | B1 |
7178432 | Han et al. | Feb 2007 | B1 |
7193819 | Chen et al. | Mar 2007 | B1 |
7199959 | Bryant | Apr 2007 | B1 |
7203020 | Viglione et al. | Apr 2007 | B1 |
7209310 | Tsai et al. | Apr 2007 | B1 |
7222410 | Klassen et al. | May 2007 | B1 |
7236911 | Gough et al. | Jun 2007 | B1 |
7269525 | Gough et al. | Sep 2007 | B1 |
7293351 | Pfeiffer et al. | Nov 2007 | B2 |
7433158 | Koh et al. | Oct 2008 | B2 |
7458282 | Wuester, Sr. et al. | Dec 2008 | B1 |
7487582 | Ho et al. | Feb 2009 | B2 |
7490398 | Klassen et al. | Feb 2009 | B1 |
7506553 | Panyavoravaj | Mar 2009 | B1 |
7549204 | Vangal-Ramamurthy et al. | Jun 2009 | B1 |
7552526 | Klassen et al. | Jun 2009 | B1 |
7559590 | Jones | Jul 2009 | B1 |
7561416 | Sarraf | Jul 2009 | B1 |
7573681 | Lee et al. | Aug 2009 | B2 |
7596722 | Pakzad et al. | Sep 2009 | B1 |
7634375 | Pakzad et al. | Dec 2009 | B1 |
7653983 | Klassen | Feb 2010 | B1 |
7669711 | Westwood | Mar 2010 | B1 |
7671599 | Tan et al. | Mar 2010 | B1 |
7673638 | Boynton et al. | Mar 2010 | B1 |
7690705 | Roberts et al. | Apr 2010 | B1 |
7729802 | Murray et al. | Jun 2010 | B2 |
7743486 | Klassen et al. | Jun 2010 | B1 |
7832083 | Son et al. | Nov 2010 | B2 |
7863889 | Bamrungtham | Jan 2011 | B1 |
7869182 | Tan et al. | Jan 2011 | B1 |
7869183 | Tan et al. | Jan 2011 | B1 |
7874424 | Westwood | Jan 2011 | B1 |
7896218 | Rakpongsiri et al. | Mar 2011 | B2 |
7900272 | Tan et al. | Mar 2011 | B1 |
7912666 | Pakzad et al. | Mar 2011 | B1 |
7916599 | Panyavoravaj et al. | Mar 2011 | B1 |
7921543 | Trongjitwikrai et al. | Apr 2011 | B2 |
7940487 | Krishnan et al. | May 2011 | B1 |
7974038 | Krishnan et al. | Jul 2011 | B2 |
7980159 | Han | Jul 2011 | B1 |
7987585 | Klassen et al. | Aug 2011 | B1 |
8066171 | Rakpongsiri et al. | Nov 2011 | B1 |
8078421 | Shastry et al. | Dec 2011 | B1 |
8092610 | Tarrant | Jan 2012 | B1 |
8094414 | Cheng et al. | Jan 2012 | B1 |
8098460 | Jen et al. | Jan 2012 | B1 |
8127643 | Tan | Mar 2012 | B1 |
8135208 | Vangal-Ramamurthy | Mar 2012 | B1 |
8156633 | Foisy | Apr 2012 | B1 |
8162366 | Tan et al. | Apr 2012 | B1 |
8168033 | Mohamad Nor | May 2012 | B1 |
8180487 | Vangal-Ramamurthy et al. | May 2012 | B1 |
8191233 | Naide et al. | Jun 2012 | B2 |
8199425 | Gustafson et al. | Jun 2012 | B1 |
8218256 | Lin et al. | Jul 2012 | B1 |
8223448 | Haw et al. | Jul 2012 | B1 |
8230570 | Choong | Jul 2012 | B1 |
8245601 | Hastama et al. | Aug 2012 | B1 |
8248733 | Radavicius et al. | Aug 2012 | B1 |
8267831 | Olsen et al. | Sep 2012 | B1 |
8270118 | Cheng et al. | Sep 2012 | B1 |
8300338 | McFadyen | Oct 2012 | B1 |
8307537 | Klassen et al. | Nov 2012 | B1 |
8312585 | Tarrant | Nov 2012 | B1 |
8322235 | Keopuang et al. | Dec 2012 | B1 |
8327529 | Tan et al. | Dec 2012 | B1 |
8335049 | Liu et al. | Dec 2012 | B1 |
8345367 | Tharumalingam | Jan 2013 | B1 |
8356384 | Ferre et al. | Jan 2013 | B1 |
8369073 | Trinh et al. | Feb 2013 | B2 |
8379363 | Kolunthavelu et al. | Feb 2013 | B1 |
8387631 | Thonghara et al. | Mar 2013 | B1 |
8424418 | Wuester, Sr. et al. | Apr 2013 | B1 |
8424824 | Tan et al. | Apr 2013 | B1 |
8432630 | Lin et al. | Apr 2013 | B1 |
8432631 | Lin et al. | Apr 2013 | B1 |
8447430 | Tan et al. | May 2013 | B1 |
8447551 | Ong et al. | May 2013 | B1 |
8451578 | Tan et al. | May 2013 | B1 |
8453841 | James et al. | Jun 2013 | B1 |
8454755 | Tan et al. | Jun 2013 | B1 |
8485772 | Ismail et al. | Jul 2013 | B1 |
8493681 | Selvaraj | Jul 2013 | B1 |
8537480 | Haw | Sep 2013 | B1 |
8544164 | Cheng et al. | Oct 2013 | B1 |
8547657 | Liu et al. | Oct 2013 | B1 |
8553968 | Lee et al. | Oct 2013 | B1 |
8561285 | Vangal-Ramamurthy et al. | Oct 2013 | B1 |
8565511 | Sungkhaphong et al. | Oct 2013 | B1 |
8582229 | Krishnan | Nov 2013 | B1 |
8596107 | Wongdao et al. | Dec 2013 | B1 |
8605383 | Wang et al. | Dec 2013 | B1 |
8640328 | Yow et al. | Feb 2014 | B1 |
8650716 | Methe et al. | Feb 2014 | B1 |
8653824 | Liu et al. | Feb 2014 | B1 |
8662554 | Srisupun et al. | Mar 2014 | B1 |
8683676 | Wuester, Sr. et al. | Apr 2014 | B1 |
8689433 | Choong | Apr 2014 | B1 |
8707531 | Sungkhaphong et al. | Apr 2014 | B1 |
8713333 | Selvaraj | Apr 2014 | B1 |
8763790 | Neamsuwan et al. | Jul 2014 | B1 |
8789446 | Sungkhaphong et al. | Jul 2014 | B1 |
8811135 | Kasino et al. | Aug 2014 | B1 |
8875386 | Foisy | Nov 2014 | B1 |
20030159273 | Jones | Aug 2003 | A1 |
20050223547 | Pfeiffer et al. | Oct 2005 | A1 |
20060117558 | Koh et al. | Jun 2006 | A1 |
20070030599 | Son | Feb 2007 | A1 |
20070163105 | Son et al. | Jul 2007 | A1 |
20070185616 | Murray et al. | Aug 2007 | A1 |
20080084630 | Trongjitwikrai et al. | Apr 2008 | A1 |
20090157848 | Khoo | Jun 2009 | A1 |
20100108256 | Roajanasiri et al. | May 2010 | A1 |
20130057986 | Vangal-Ramamurthy et al. | Mar 2013 | A1 |
20130248545 | Thongjitti et al. | Sep 2013 | A1 |