This application claims priority to and the benefit of co-pending U.S. patent application Ser. No. 15/411,541, COMBAT VEHICLE RESCUE TOOL, filed Jan. 20, 2017 which application is incorporated herein by reference in its entirety.
The application relates to a combat vehicle rescue tool and particularly to a combat rescue tool which couples to and turns a mechanical connection point of a combat lock.
Mine-resistant ambush protected (MRAP) vehicles are used commonly in conflict areas, especially where improvised explosive devices (IED) are a daily threat. The MRAP vehicle doors use combat locks. Combat locks typically provide rescue access by rotation of a mechanical coupler accessible via a recessed part of an outer panel of the vehicle. The mechanical coupler typically includes a male square rotatable connection point.
A combat vehicle rescue tool for operating a combat lock to open a door of a combat vehicle by engaging an exterior mechanical rescue coupler includes a handle of a combat vehicle rescue tool. The handle has about a rectangular cross section defined by two wide surfaces and two smaller side surfaces. The handle includes a first end extending into a first forked arm and a second forked arm, an inside fork surface of both forked arms defining a substantially rectangular opening, both forked arms including a cylindrical wall defining through-holes perpendicular to a long axis of the handle and sized to accept a fastener pin, and a second tapered end of the handle having tapered side surfaces, each corner of the tapered end rounded over, the second tapered end configured for passing through a plurality of combat vest MOLLE loops for stowage on and removal from the combat vest, and the end face of the second tapered end including a cylindrical wall threaded in part to accept a spare fastener pin threadingly engaged within. A selectable angle end wrench of a combat vehicle rescue tool is pivotally mounted to the handle by the fastener pin. The selectable angle end wrench includes a box wrench sized to fit an exterior mechanical rescue coupler of a combat vehicle door. The selectable angle end wrench has a pair of face surfaces. The selectable angle end wrench extends into a rectangular stem having a stem width sized to rotatingly fit into the substantially rectangular opening. The rectangular stem has an end wrench cylindrical wall parallel to a face plane of the pair of face surfaces. The end wrench cylindrical wall is defined by a hole through the rectangular stem sized to accept the fastener pin. The rectangular stem has at least three angled faces on a rectangular stem end opposite to the box wrench.
The selectable angle end wrench can include a detent mechanism including a spring biased ball or a spring biased rod with a rounded tip or a pointed tip which engages in a slot in at least one of the at least three angled faces or the pair of face surfaces to selectively engage one of the at least three angled faces and the pair of face surfaces to set a predetermined angle of the selectable angle end wrench with respect to a long axis of the handle.
The selectable angle end wrench can include an eight-point box wrench. The eight-point box wrench can accept a square mechanical coupler at a plurality of acceptance angles. The eight-point box wrench can further include bevels to guide four of eight points of the eight-point box wrench over a 4-sided square combat lock rescue mechanical coupler rotatable connection point.
The 4-sided square combat lock rescue mechanical coupler can further include an O ring disposed in a circumferential slot on a portion of the 4-sided square combat lock rescue mechanical coupler which is removably disposed in the eight-point box wrench to provide a friction hold of the portion of the 4-sided square combat lock rescue mechanical coupler disposed in the eight-point box wrench. The 4-sided square combat lock rescue mechanical coupler further can include an O ring disposed in a circumferential slot on a portion of the 4-sided square combat lock rescue mechanical coupler which is removably disposed in the selectable angle end wrench to provide a friction hold of the portion of the 4-sided square combat lock rescue mechanical coupler disposed in the selectable angle end wrench. The 4-sided square combat lock rescue mechanical coupler can further include a circular end cap.
The fastener pin can include a threaded end and a cylindrical wall of at least one of the first forked arm or the second forked arm includes a threaded cylindrical wall which defines a threaded hole. The fastener pin can include a machine screw having a head, a smooth cylindrical rod section ending in a threaded rod sized to thread into the threaded hole. The fastener pin can include a knurled head for manual operation by fingers. The fastener pin can include a hardened steel metal.
The selectable angle end wrench can be interchangeable with any one of a plurality of different sized or types of end wrenches.
The combat vehicle rescue tool can further include a seat belt cutter disposed about at an end of the handle opposite the selectable angle end wrench. The seat belt cutter can include a blade having at least a single knife blade edge. The seat belt cutter can include a blade having a pair of angled knife blade edges joined at a common apex. The blade can have a pair of angled knife blade edges is bolted onto a recess edge within the handle.
The handle can include an aluminum metal and the selectable angle end wrench includes a steel metal.
The handle can further include a shackle key.
The combat vehicle rescue tool can include a selectable angle end wrench section with detent mechanism mechanically coupled to a tubular section or a rod section, wherein the selectable angle end wrench section is sized to fit over the tubular section or the rod section, or the selectable angle end wrench section is sized to fit within the tubular section or the rod section.
A shackle pin removal tool can mount to the handle in place of the box wrench. Or, a shackle pin removal tool can slidingly mount into the box wrench.
The foregoing and other aspects, features, and advantages of the application will become more apparent from the following description and from the claims.
The features of the application can be better understood with reference to the drawings described below, and the claims. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles described herein. In the drawings, like numerals are used to indicate like parts throughout the various views.
As described hereinabove, mine-resistant ambush protected (MRAP) vehicles are used commonly in conflict areas, especially where improvised explosive devices (IED) are a daily threat. The MRAP vehicle doors use combat locks. Combat locks typically provide rescue access by rotation of a mechanical coupler accessible via a recessed part of an outer panel of the vehicle. The mechanical coupler typically includes a male square rotatable connection point.
In any incident, which requires extraction of injured troops from a MRAP, rescue crews need a quick and reliable way to open one or more of the MRAP doors. One problem with access to the rescue mechanical coupler is that MRAPs also typically have a variety of types of screening fences mounted around the vehicle outer surfaces. The purpose of the screening fences is to minimize incoming projectile damage to the MRAP surfaces and windows, such as by causing rocket propelled grenades (RPG) to explode prior to contact with the actual MRAP skin surfaces. While, there are openings in the screening fences or similar overlay surfaces to gain access to the rescue mechanical coupler, access angles may be limited by the screening superstructure or by bent or damaged superstructure following an accident or combat caused damage.
There is a need for a relatively simple robust combat lock mechanical coupler rescue tool. The rescue tool should have flexible configurations so as to be quickly configurable for a wide variety of nearby interfering structure, while still allowing quick and reliable access to the rescue mechanical coupler of the combat door lock. The tool should also allow for coupling to a wide variety or types of rescue mechanical couplers, such as, for example, male square rotatable connection points of various sizes. The tool should also include an integral seat belt cutter so that the same tool can be used throughout a MRAP rescue evolution.
It was realized that a solution to the problem of nearby interfering superstructure is a rotatable (selectable angle) end wrench with detent positions. It was found that a detent mechanism or a friction mechanism, such as, for example, a ball and spring locking into about a right-angle position, about a 45-degree position on either of two sides, and an inline position with the rescue tool handle provides enough configuration flexibility to reliably engage a rescue mechanical coupler despite the presence of an outer projectile screening superstructure over the outer skin of the vehicle. Also, because of a crash or other combat related damage to the vehicle and its superstructure, there may be obstructed access to the rescue mechanical coupler, such as where a part of the superstructure or other parts of the vehicle or debris may have bent or been pushed over the normal access path to the rescue mechanical coupler.
Handle 101 can include an integral seatbelt cutter 107 at a second end of the combat vehicle rescue tool. There can also be a tapered or pointed section 115 to assist in entering and prying panels or other parts during a rescue operation. However, it is important that the tapered end have rounded edges without sharp points so that the tool not damage the combat MOLLE loops through which it is typically stored and carried. The new combat vehicle rescue tool of the Application stows in a flat longitudinal line through a plurality of MOLLE loops. Any significant bends or protrusions, or a rectangular end with sharp edges could make a tool unsuitable for combat carry. Indeed, merely falling the wrong way on a tool end with sharp features could severely wound or kill a soldier attempting to carry such a tool.
An interchangeable end wrench is sized to fit a mechanical connection part larger than a mechanical connection part which corresponds to end wrench 103 of
An additional cylindrical wall 323 can define a hole in the handle 101 for any suitable carrying lanyard or to post or stow the tool when not in use.
The end wrench can be made from any suitable material, typically a metal material. An end wrench typically can be made from a steel, stainless steel, titanium, or combinations thereof. Metal alloys, such as for example, steel alloys are suitable end wrench materials. Typically, an end wrench is manufactured by machining, however, any suitable manufacturing technique can be used, such as, for example, stamping, laser cutting, water jet cutting, etc.
Typically, the corners of handle 101 can be rounded over as shown by corners 501 in
There can be other embodiments of the seatbelt cutter where the cutting action takes place as the tool is pushed onto the seatbelt.
It is contemplated that there could also be embodiments of the combat vehicle rescue tool having either or both embodiments of the seat belt cutter as a hook channel or push channel.
Seatbelt cutting blade 701 can be bolted into a recess 703 of handle 101 such as by bolt 705. Bolt 705 can be any suitable type of machine screw or machine bolt of any suitable thread, with any suitable head. In operation, the seat belt to be cut is slid into channel 711 and the rescue tool 100 is pulled over the seatbelt so as to cut completely through and sever the seatbelt. A cylindrical opening 735 can define a hole useful for a carrying lanyard or to accept a post for stowing the tool when not in use. A tapered or pointed section 115 can assist in entering and prying panels or other parts during a rescue operation.
While
End wrenches of different types and sizes, male and female: While presently most combat locks include a square rotatable exterior access mechanical coupler for rescue access to open the combat locked door of a combat vehicle, it is contemplated that there can be other types of mechanical couplers designed to accept or mate with an end wrench type different from the present square mechanical coupler standard. It is contemplated that interchangeable end wrenches, already designated for different sized square mechanical couplers, can also be provided to mate with other types of mechanical couplers, either male or female. For example, there could be male end wrench parts having a protruding triangle, square, hex (e.g. Allen key), star (e.g. TORX), or other suitable protruding portion (as opposed to an open female multi-point end wrench part). Those skilled in the art will understand that end wrenches for other types of mechanical rescue couplers now known or as designed in the future can be made in the spirit of end wrench 103, with a rectangular stem to fit a handle 101 as described hereinabove.
Exemplary embodiment: A combat vehicle rescue tool for operating a combat lock to open a door of a combat vehicle by engaging an exterior mechanical rescue coupler includes a handle 101,
In most embodiments, the combat vehicle rescue tool can be stored as a carried tool in a personal worn kit or carry kit, typically a vest worn as outer wear over personal armor. As well known to those skilled in the art, typical combat wear over person armor includes vests designed to hold and carry combat tools. Combat worn clothing webs of various types are prevalent, such as for example, MOLLE web loops, pals webbing, and 1-inch webbing (typically sewn in 1¼″ spaced apart seems). In embodiments where the tool handle is, for example, 10 to 12 inches long, the tool can typically engage 6 loops for secure storage and transport.
Alternative handles: Dished out handle or handle with relief (cut out) openings:
Tubular Handle: In some embodiments there can be a tubular handle. The tubular handle can be made from any suitable material, such as for example, any suitable metal, fiber glass, fiber glass with metal strands, carbon composite, or ceramic tube, such as made from an alumina ceramic. For example, during testing a fiberglass metal strand material based tube was found to be suitable for use in a combat vehicle rescue tool as described hereinabove.
In some embodiments, a combat vehicle rescue tool having a tubular handle can be a two-piece structure. The tubular handle can accept a male or female tool end or coupling section, typically cylindrical end, or cylindrical coupling section. The cylindrical end can be tubular with an open interior, where a female cylindrical end assembles over the outside surface of a tubular handle.
Or, the cylindrical end can be tubular with an open or closed interior, where a male cylindrical end assembles into the inside surface of a tubular handle.
The sections of such two-piece structures can be combined by any suitable adhesive, glue, welding, bonding, or threading technique. Further, the sections can be pinned by any suitable pin, screw or bolt.
Detent mechanism: Detent mechanisms include any suitable mechanism which holds the end wrench in any angle as defined by a flat of the end wrench assembly, such as the flats on the end of a rectangular stem as described hereinabove. In other words, any of three or more flats of the stem of the end wrench provide and act as a catch mechanism to bias the end wrench to a preferred angle as defined by the angle of each flat.
For example, in place of a spring biased ball, or spring biased post with a ball end, acting against a channel (
Friction mechanism: It is contemplated that there could also be embodiments where the end wrench angle is fixed by a frictional technique. For example, there could be any suitable compressible material deposited in a sufficient thickness along the surface of the forked opening, such as the surface through which the exemplary detent rod of
Using such frictional techniques, it is contemplated that it may also be possible to provide a stem of an end wrench with many small flats, or even with a contoured curved surface so that in the presence of an opposing frictional material (e.g. a rubber, or other such natural or synthetic compressible material) the end wrench be set to virtually any angle of a number of small incremental detent positions, or effectively set continuously to any desired angle of continuum of angular positions (as there can be many small detents with a small delta angle between each of many small flats). Or, in the limit, there could be only a contoured surface, such as a curve that is opposed by a compressed material such that the end wrench angle is continuously settable to any desired angle, for example, from about −90 degrees to +90 degrees. In such embodiments, the frictional force would be such that a soldier or average strength could set the angle. Alternatively, it is contemplated that in some embodiments, there could be a frictional level or clamp mechanism such that a user of the combat vehicle rescue tool could select an unlocked position to move the frictional surface away from the stem of the end wrench to allow the use to set the desired end wrench angle, and to re-engage with relatively higher frictional force to hold the set end wrench angle. Such levers and/or cam mechanisms for fixing a surface against a frictional surface (e.g. with a compressible material), or for fixing two surfaces, each surface having a compressible (frictional material) against each other are known to those skilled in the art.
Handle materials: The handle can be made from any suitable material. Suitable metals include, for example, aluminum, steel, and titanium and any alloys, or combinations thereof. Also, any suitable non-metals, such as, for example, composites, carbon composites, carbon fiber composites, plastics, thermoplastics, nylon, glass filled nylon, acrylic, polyethylene, polypropylene, polyurethane, polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA), low-density polyethylene (LDPE), high-density polyethylene (HDPE), or polyethylene terephthalate, poly(ethylene terephthalate) (PET) may be suitable materials, or combinations thereof. Manufacturing can be done, for example, by injection molding, acrylic injection molding, PTFE Injection Molding, PMMA injection molding, LDPE injection molding, HDPE injection molding, PET injection molding, or by glass filled injection molding. It is contemplated that some softer materials may be suitable when combined with fibers or strands of materials or other chemical hardeners to provide enough rigidity to function as a combat vehicle rescue tool handle. Some softer plastics alone may also be less suitable for use as a handle material. However, in some embodiments, there could also be a handle with a softer outer layer, particularly for ergonomic reasons.
Handle finishes: The handle can have any suitable finish. The finish can have many purposes. For example, for some combat applications, particularly for special forces (SF), it is desirable that the finish have low light reflectivity, such as a non-reflective black finish. The finish may also enhance gripping ability, such as a slightly rough finish, or enhance sliding in and out of the kit webbing as a smoother finish. The finish can also be used to prevent some forms of oxidization, such as rust where parts of the end wrench are typically made from a steel. Or, an oxidation, such as an aluminum oxidation treatment of an aluminum handle can inhibit further corrosion of the handle. Suitable finishes include, for example, anodizing, bluing, baked on enamel, Cerakote, Parkerized, powder coating, plating, deposited materials, electroplating, painting, or machining (e.g. a knurled surface).
Relief cut in handle as a tool: In some embodiments, there could be a cut, typically a cut through the handle of the tool. For example, a slot in the handle could engage a flat head of a bolt to turn the bolt (e.g. to open a shackle or clevis).
There can also be embodiments of a combat vehicle rescue tool where the end of the tool handle opposite the end wrench has other useful tool ends in addition to, or in place of the belt cutter. For example, it is contemplated there could be a tool handle similar to the form of a marlin spike, as a shackle pin removal tool.
While the emphasis of the combat vehicle rescue tool described hereinabove is on military and combat applications, it is understood that there will also be civilian applications, such as, for example, where police forces use such vehicles in civilian law enforcement roles.
A rescue tool of the prior art which might not always be able to properly engage a rescue mechanical coupler, especially where superstructure may have bent due to a crash or other combat damage preventing straight-on access to the mechanical coupler.
Spare fastener post—As described hereinabove,
Particularly during a difficult combat rescue, the fastener post might be dropped, damaged, or lost. I realized that a spare fastener post can be stored in any suitable hole in the handle with threads towards the bottom of the hole. For example, the hole can be in the end of the tapered end of handle, where the spare fastener post can be secured by threaded engagement. Moreover, the relatively hard end of the exposed fastener post can be used to break glass, such as might be needed for a rescue from a light duty truck or civilian car, such as also might be damaged in an IED explosion.
Tapered end of handle—The tapered end of the handle can have tapered side surfaces which typically extend to an end of about half the width or less of a width of each of the two wide surfaces.
The rounded corners 501 make it easier to slide the tool through storage loops, such as MOLLE loops on a vest or bag. The taper also makes it easier and faster to stow the tool into and through a series of MOLLE loops. Also, sharp edges might damage the MOLLE loops over time, as the tool is intended to be carried on every MRAP deployment by as many soldiers an contractors as possible.
Storing and Carrying the Combat Vehicle Rescue Tool in MOLLE Loops
The combat vehicle rescue tool can also be carried in a separate bag. For example,
Shackle pin removal tool—An improved shackle pin removal tool 3300 is shown in
Affixing the Shackle Pin Removal Tool 3300 to the End of the Handle—
The wings 3311 extend over the handle when assembled (
Shackle pin removal tool slid into a box wrench—
Shackle pin removal tool tip 3377—The prototype shackle pin removal tool shows a relatively sharp tip. However, more typically, the end would be rounded over for carry safety.
Shackle pin removal tool sides—It has been found that squared sides are less likely to bind in the shackle over rounded sides or a round cone shape. However, any suitable side shape can be used.
Shackle pin removal tool material—The prototype was made from aluminum. However, more typically, the shackle pin removal tool can be made from a hardened steel. A steel shackle pin removal tool would not suffer aluminum dents shown in the drawings of the prototype.
Shackle pin removal tool carry—The shackle pin removal tool would more typically be carried in a bag or carry case (e.g.
Applications and Problems Solved
As shown hereinabove in
Before the new combat vehicle rescue tool of the Application, there were two standard issue MRAP rescue tools which could be used to open the combat locks of the MRAP.
The most common U.S. DOD issued tool is too heavy and cumbersome to routinely carry and is typically stored in a locked exterior box of the MRAP. One problem is that combat or mine/IED explosions might cause the MRAP to roll over on the side where the box is, trapping the box under the vehicle. Another problem is that the exterior box is locked and typically only one member of the team can readily access the key to the box.
Some MRAPs carry a tire iron like tool with four different MRAP lock heads, typically specified per regulations to be secured to the left rear portion of the vehicle. Just like the tire irons that were carried in civilian cars, they are big and heavy. This tool was often lost when the plastic ties securing it to the vehicle inadvertently failed, or the tool was commonly stolen from unattended vehicles. Also, depending on the direction from which incoming fire is coming from, the back of the vehicle might be less accessible following a combat incident.
One of the problems solved by the new tool is that the relatively light weight tool can be carried by several or all personnel of the MRAP crew and others allied forces in the vicinity. In fact, the tool can be a standard issue carry item, “one of the things they carry”, just as common as the standard issue service pistol. The tool solves a critical need, where any of a number of personnel near a severely damaged MRAP can simply slide the tool out of their own combat vest and open the damaged MRAP door one handed to affect a rescue, which is often done in the midst of incoming rifle rounds, and grenades (RPGs). The tool is equally relevant for civilian police special emergency response team's use of MRAPs, such as for active shooter or terrorist attack situations.
A typical MRAP vehicle includes an installed RPG steel netting. There is a physically restricted access area to the combat lock through a relatively small opening in the RPG netting.
MRAP vehicles have been in service around the world since about the 1970's, and more specifically were introduced to U.S. armed forces by about 2004, then in large numbers around about 2007 following the increase in attacks involving road side bombs and improvised explosive devices (IEDs). Currently there are more than 35 variants in use by more than 10 different countries.
The MRAP combat locks are vital to safety and security. The combat locks also keep the doors from popping open in case of overpressure from a blast. While traveling at low speeds through populated areas, the combat locks prevent access to the inside of the vehicle by enemy actors, who try to open the doors to throw hand held explosive devices into the MRAP with the intent of wounding or killing the occupants.
The circle 3401 shows an access point, where following installation of RPG nets, it is no longer possible to get two handed access to the combat lock to efficiently use existing rescue tools. The lock to the left of the soldier at approximately shoulder height, on the same vertical plane as the combat vehicle mirror, below the shackle. The opening in the RPG net is about 4″×6″ inches where it is also impossible to get two hands in the holes and the 4-way tire iron version will not fit either.
Yet, despite decades of use and increasingly difficult rescue situations (The current DOD issued tools, either stowed in the outside BII box or secured to the outside) cannot be operated with the RPG netting installed along the outside of the MRAP in place, either intact or damaged from a blast because of the size of the existing access hole. Thereby requiring the removal of the netting subsequently requiring more time and delaying rescue efforts where mere seconds lost could make the difference between a rescue and recovery.
The current issue DOD Universal Combat Lock Tool (UCLT, NSN 2540-01-574-0491) is over 16″ long closed, by 3.5″ wide, with an arm over 10″. The UCLT is 25″ long fully opened.
The tool requires a two handed operation and weighs approximately 7 pounds, far too heavy and large to carry at all times with other standard carried gear. The attached ARMY instruction tells soldiers to stow the tool in the vehicle's exterior “BII stowage box”. Also, if the rescuer needed to cut the occupant restraints (a situation which is highly probable given the circumstances requiring employment of the UCLT) a separate cutting tool is required.
Yet another problem with the UCLT is that so many of the tire iron versions and even the UCLT have been stolen, necessitating the shapes of the locks to be changed for security purposes. For example, the UCLT shown above is for sale on eBay. This DOD UCLT will no longer open several versions of active combat MRAP doors which have since been “re-keyed” with new shapes. Whereas the proposed tool just needs the addition of a new head manufactured to fit the new lock instead of manufacturing a whole new tool thereby reducing cost and decreasing the time it takes to field the new “key” in a dynamic combat environment.
I invented the new combat tool of the Application while in the combat theatre (Afghanistan) following an incident where the UCLT was locked in the tool box on the side of the vehicle, and the vehicle was overturned onto the exterior tool box. It was common practice to stow the relatively large and heavy UCLT outside the vehicle, as per ARMY directives to keep clutter down as the inside of the MRAP interior is very confined, and where leaving a UCLT in the cab could create a secondary projectile during a rollover or explosion thereby causing either death or serious injury.
The new combat rescue tool as described by the Application is the first practical combat wearable solution where any one of many nearby personnel can open the locked door of a combat damaged and rolled MRAP by pulling the unlock tool from their own combat armor, combat vest, med kit, rucksack, etc.
It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1146544 | Anderson | Jul 1915 | A |
5970552 | Kwiecien | Oct 1999 | A |
6688196 | Warner | Feb 2004 | B2 |
7472631 | Wu | Jan 2009 | B1 |
20110113932 | Lambert | May 2011 | A1 |
20160176028 | Doggett | Jun 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20200269408 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15411541 | Jan 2017 | US |
Child | 16871233 | US |