This invention relates to a combined antenna and conductor, such as a contact element that serves as a combination conductor and waveguide antenna and/or a connector having such a contact element.
According to the present invention, a contact element is provided that can serve as both an electrical socket for direct-contact communications and can serve as a waveguide antenna for wireless communications. The contact element includes a surface extending in a longitudinal direction, the surface defining a passage that extends between an opening at a first end of the contact element and a back wall at a second end of the contact element. The contact element also includes a pickup element for injecting and/or sensing electromagnetic energy in the passage. The pickup element extends into the passage from the surface in a direction normal to the surface.
It is preferable that at least a portion of the surface be electrically conductive in order to allow for the contact element to provide direct-contact communication. The surface can include a contacting section that is electrically conductive and extends from the opening towards the back wall. The surface can also include a pickup section that is electrically conductive and extends from the back wall towards the opening. In such a case, the pickup element can extend from the pickup section of the surface. The surface can further include an insulating section between the contacting section and the pickup section for electrically isolating the contacting section and the pickup section from each other.
The surface can optionally be shaped so as to provide for mode conversion, for example to convert circular mode electromagnetic waves entering the opening into rectangular mode waves.
A distance d between the pickup element and the back wall can preferably be selected to satisfy the following relationship:
d=¼λg=¼(λo/(1−(λo/λc)2)1/2)
where λg is a wavelength of an operating frequency of the contact element (i.e., waveguide wavelength), λc is a lower dominant mode cutoff wavelength of the operating frequency, and λo is a wavelength of the operating frequency in free space.
The opening in the contact element can be circular and have a radius r that satisfies the following equation:
r=λc/k
where λc is a lower dominant mode cutoff wavelength of an operating frequency of the contact element and k is a constant associated with an operating mode of the contact element.
According to another aspect of the invention, a connector assembly is provided that includes a support member and a contact element, supported by the support member, for mating with a pin element of an opposing connector and for serving as a waveguide for transmitting and/or receiving wireless communication.
The contact element can include a surface that extends in a longitudinal direction, defining a passage that extends between an opening at a first end of the contact element and a back wall at a second end of the contact element. The contact element can further include a pickup element for injecting and/or sensing electromagnetic energy in the passage, the pickup element extending into the passage from the surface in a direction normal to the surface.
The connector assembly can further include a second contact element, supported by the support member, for mating with a second pin element of an opposing connector, wherein the second contact element is incapable of serving as a waveguide for transmitting and/or receiving wireless communication.
According to another aspect of the invention, a projectile is provided that includes a connector having a contact element for mating with a pin element of an opposing connector in order to transfer electrical signals from the pin element and for serving as a waveguide for receiving wireless communication signals. The projectile also includes a receiver in communication with the contact element for converting the received wireless communication signals into data signals, and a data processor in communication with the contact element for receiving from the contact element the electrical signals transferred from the pin element.
According to another aspect of the invention, a projectile control system is provided that includes a projectile having a projectile connector that includes a contact element, a pre-launch controller for communicating with the projectile prior to a launch of the projectile, an umbilical cord for electrically connecting the contact element of the connector to the pre-launch controller, and a transmitting device for wirelessly communicating with the projectile via the contact element of the connector after the launch of the projectile.
The present invention is illustrated by way of example and is not limited by the figures of the accompanying drawings, in which like reference numbers indicate similar parts:
The contact element 100 allows for both direct-contact and contactless forms of communication. For example, the contact element 100 can provide for direct-contact communication in the form of an electrical signal such as a DC voltage and can provide for contactless communication in the form of electromagnetic waves. This is accomplished by providing the contact element 100 with a contacting section 110 for direct-contact communication and a pick-up section 115 for contactless, or wireless, communication. This allows a connector having the contact element 100 to serve as both a direct-contact connector and an antenna.
For direct-contact communication, a pin contact 140 (shown in phantom) can be inserted into the contact element 100 through opening 105. The contacting section 110 has an inner surface made of a conductive material, for example copper, silver, or gold, allowing signals to be transferred between the contact element 100 and a pin contact that has been properly inserted. A contact signal line 135 provides a signal path to and from the contacting section 110, bypassing the pick-up section 115. In addition, an insulating section 125 is provided for electrically isolating the contacting section 110 from the pick-up section 115. Thus, the pin contact 140 should be selected such that it does not extend beyond the insulating section 125 when inserted into the contact element 100.
For contactless or wireless communications, the contact element 100 can serve as a cylindrical waveguide, where the opening 105 is the waveguide aperture. A probe 120 is provided in the pick-up section 115 for absorbing and/or injecting electromagnetic energy in the contact element 100. The inner surface of the pick-up section 115, including a back wall 130, is made of a conductive material, for example copper, silver or gold.
Thus, at times when there is no pin contact inserted in the contact element 100, the contact element 100 is open and can serve as a circularly polarized antenna. Apertures like antennas act as high-pass filters with a cutoff wavelength set by dimensions of the aperture, which in the first embodiment is the opening 105. In the case of circular apertures, the cutoff wavelength differs for different modes of operation, where a “mode” refers to the shape and structure of electromagnetic field-lines carried within the waveguide once the field has passed into the waveguide from its associated aperture. The dominant mode in a circular waveguide is a transverse electric (TE) mode known as TE11, shown in
Thus, the size (inner diameter) of the opening 105 has an impact on cutoff and allowed mode. For example, the cutoff wavelength λc for a circular waveguide for TE11 mode is λc=(k)(r)=(3.412)(r). If the cutoff frequency λc for this mode is set at 30 GHz, r is found to be r30=0.293 cm (solving for r=λc/3.412=(c/30 GHz)/3.412, where c=speed of light), or in inches, r30=0.12 in. If the cutoff frequency λc for this mode is set at 90 GHz, r is found to be r90=0.088 cm, or in inches, r90=0.035 in.
The shape of the contact element of the present invention can vary from a cylinder. For example, the shape of the contact element can vary in order to allow for mode conversion. Methods of designing waveguides to cause a specified mode conversion are known in the art. However, since the contact element of the present invention can serve as both a socket for mating with a pin contact and a waveguide for wireless communication, the shape of the contact element is preferably selected to allow for at least a portion of the inner side of the contact element nearest the opening to make contact with an inserted pin contact. As an example, in
The insulating section 125 is made of a dielectric insulating material suitable for protecting the pick-up section 115 from data voltage. Since the inner surface of the insulating section 125 is an insulating material rather than a conductive material, the insulating section 125 interrupts the internal waveguide field by providing a section through which the wave must travel via free space. The desirable length of this section (i.e., distance between respective inner surfaces of contacting section and pickup section) is determined based on the breakdown voltage (dielectric breakdown) of the material used to create the insulating section 125. Table 2 below shows examples of dielectric strengths for some common materials that can be used for the insulating section 125.
In the present embodiment, rubber is used as an easily manufactured insulating section 125 between the contacting section 110 and the pick-up section 115 and a data-line voltage of 5 volts. Using the data from Table 2, the thickness of the insulation section can be calculated as (5V)/(25×106 V/m)=200×10−9 m. However, this only accounts for the dielectric strength of the material used for the insulating section 125. Since air, especially near saltwater, has a lower dielectric strength, the spacing requirement between the respective outer surfaces of the contacting section 110 and the pick-up section 115 is increased. Where salt-air is a factor of 100× lower in dielectric strength than “air” (as noted in Table 2) the rubber insulating section 125 would have to be (5V)/(10−2×3×106)=0.17 mm thick. Where salt-air is a factor of 1000× lower, the rubber insulation section would have to be (5V)/(10−3×3×106)=1.7 mm thick.
However, the distance between the exposed portions (i.e., exposed to air) of the contacting section 110 and the pick-up section 115 need not be equal to the distance between the unexposed conductive surfaces of the contacting section 110 and the pick-up section 115. For example, as shown in
To maximize RF absorption, it is desirable to optimize the placement of the probe 120 in the pick-up section 115. The optimal location for the present embodiment is determined considering a plane wave incident normally on a perfect plane conductor—similar to the condition of the back wall 130 in the contact element 100. An E-field incident on a plane conductor such as the back wall 130 experiences a 180° phase shift upon reflection. Mathematically, this is to satisfy the boundary condition that an electric field goes to zero on the surface of an ideal conductor. Intuitively, this may be seen as an electron response to being pushed in one direction at some instant, creating a reverse electromotive force (or field) effect in the opposite direction.
The incident and reflected waves produce a standing wave within the cavity of the contact element 100. The 180° phase shift noted above moves the location of maxima and minima field strength within the cavity. Avoiding a minimum of zero field—due to interference between incoming and outgoing waves—at ¼ wavelength from the back wall 130, a maximum wave energy can be found. By this simplified treatment, the probe 120 can be placed ¼ of a waveguide wavelength from the back wall 130.
However, under certain conditions, locating an optimal position for the probe 120 may not be so simple. For example, in the case of a rectangular waveguide or rectangular transition in a waveguide, the field reflects down the waveguide, off sides of the waveguide at some angle set by guide size and frequency. Phase change of reflected E-fields depends upon E-polarization with respect to the plane of incidence. The plane of incidence is defined as that plane containing both incident and reflected beams in a plane normal to the surface. For polarization perpendicular to the incident plane, the same 180° phase shift mentioned above occurs when the index of refraction in a medium the beam is from is lower than that of the medium of the incident plane. In the present embodiment, the index of refraction can be considered infinite as for a perfect conductor. Further analysis shows that dielectric/conductor interfaces behave the same for parallel polarization as for perpendicular polarization in terms of a phase shift. This equality in phase behavior for both polarizations means that it is not necessary to know the plane of incidence in the event of linear transmissions from a ground source. As a result, no matter what the orientation of the contact element 100, the probe 120 remains ¼ waveguide wavelength from the back wall 130. Optimal distance d from the back wall 130 is therefore:
d=¼λg=¼(λo/(1−(λo/λc)2)1/2) (1)
where λg is the wavelength of an electromagnetic wave within the waveguide, λc is the lower dominant mode cutoff wavelength, and λo is the wavelength of electromagnetic wave in free space, i.e., the free-space frequency. For example, in the case of Ka band, the free-space frequency is fo=35 GHz and the cutoff frequency can be fc=30 GHz, so (using c=3×106 m/s) the distance from the back wall 130 to the probe 120 is then ¼λg=¼(0.86 cm/(1−(0.86 cm/1.0 cm)2)1/2)=0.42 cm. As another example, in the case of W band, the free-space frequency is fo=94 GHz and the cutoff frequency can be fc=90 GHz, so (using c=3×106 m/s) the distance from the back wall 130 to the probe 120 is then ¼λg=¼(0.316 cm/(1−(0.316 cm/0.33 cm)2)1/2)=0.28 cm.
The length of the waveguide (from opening 105 to back wall 130) can be set to take advantage of the tendency of a beamwidth to narrow with sidelobes settling out once the length to diameter (of the waveguide) ratio is slightly greater than 4. Thus, in the examples from above for Ka band, having a cutoff frequency of 30 GHz (r30=0.293 cm so d30=0.586 cm), or for W band, having a cutoff frequency of 90 GHz (r90=0.088 cm so d90=0.176 cm), the length of the waveguide can be approximately:
Waveguide Length35=2.344 cm
Waveguide Length94=0.704 cm
As noted above, more than one connector socket can be populated with the contact element 100. Since the contact element 100 is such a relatively small element, it tends to behave much like an ideal, elemental, isotropic Huygens wavelet source, so a phased array approach can be used to narrow the combined beamwidth. Examples discussed below and shown in
Numerical comparisons between
Turning now to
The contact element 200 can be used for direct-contact and wireless communication. The contact element 200 is preferably constructed primarily of a highly conductive material. Examples of suitable materials include copper, silver, and gold. The contact element 200 has an opening 205 for accommodating the insertion of a pin 240 (shown in phantom). Direct-contact communication can then take place between the contact element 200 and the pin 240, which are in contact with each other allowing for the direct transfer of signals, which can be transferred from the contact element 200 via a contact signal line 235. The contact element 200 also has a probe 220 for injecting and/or absorbing electromagnetic energy in the contact element 200. A probe signal line 245 is provided to transfer signals to and from the probe 220. As described above for the first embodiment, the inner chamber of the contact element 200 from the opening 205 to the back wall 230 acts as a waveguide, particularly when there is no pin 240 present. While the contact element 200 of the second embodiment eliminates the insulating section 125 of the first embodiment, it is still necessary to ensure that the pin 240 is not too long. That is, the pin 240 should be selected such that it will not damage the probe 220 when inserted in the contact element 200.
The manner in which the contact element 200 can be configured (i.e., length, diameter, probe placement, shape variation) with consideration to its function as a waveguide is essentially the same as described above with respect to the first embodiment, and for this reason such description is not repeated here. However, it is worth noting that the contact element 200 represents a much more simplified construction compared to that of contact element 100 since the contact element 200 does not require the insulating section 125.
Turning now to
Turning now to
The plug assembly 330 is populated with a plurality of pins 240 for providing direct-contact communication with respective contact elements 200/310 when connected. Thus, it will be appreciated that the contact elements 200 of the connector assembly 300 serve a dual purpose by providing both direct-contact communication and wireless communication. That is, when the connector assembly 300 is connected to the plug assembly 330, the contact elements serve as a conduit for direct-contact communication with pins of the plug assembly 330. On the other hand, when the connector assembly 300 is not connected to the plug assembly 330, the contact elements 200 are free to act as waveguides.
From the view shown in
It will also be noted that, in the configuration shown in
There are numerous applications that would benefit from the use of a connector that can serve to provide both wireless and direct-contact types of communications. One such application is in the field of guided projectiles as illustrated in
Prior to launch, the projectile 400 is connected to a pre-launch controller 410 via an umbilical cord 420. The umbilical cord 420 is attached to a projectile connector 440 on the projectile 400 via an umbilical cord connector 430. The projectile connector 440 includes one or more contact elements, such as contact elements 100 and 200 discussed above, that can provide direct-contact and wireless communication. The umbilical connection to the projectile 400 can be used to download critical data from the pre-launch controller 410 before launch as a means of initializing missile systems and providing most recent target data. More specifically, electrical signals sent from the pre-launch controller 410 are transferred to a data processor 480 on the projectile 400 via one or more contact elements 100/200 of the projectile connector 440.
After launch, as shown in
Prior missiles have an umbilical connector for pre-launch (direct contact) communications and an omni or near omni-directional antenna for post-launch (wireless) communications. These antenna dominate regions of the missile body, absorbing valuable real estate, weight, and cost dedicated to proper operation of the antenna and associated receiver electronics. The projectile 400, on the other hand, makes use of the projectile connector 440 for both direct-contact and wireless communications, thus eliminating the need for an additional antenna mounted to the missile body. In addition, compared to prior missiles, the performance of the projectile 400 is enhanced due to the use of an aft looking antenna that is highly directional, instead of an omni or near omni-directional antenna on the missile body, which is less directional and therefore requires the use of guard channels, which in turn require additional components. Also, the use of the projectile connector 440 adds an element of stealthiness to the capabilities of the projectile 400, since the projectile connector 440 can have the same exterior appearance as a standard prior connector so that a visual inspection of the projectile 400 would be less likely to reveal the presence of wireless capabilities.
Other applications where a dual use connector (i.e., direct contact and wireless) can be of use include rockets, satellites, and space vehicles, especially where there are space/weight limitations.
Although the present invention has been fully described by way of preferred embodiments, one skilled in the art will appreciate that other embodiments and methods are possible without departing from the spirit and scope of the present invention.
This is a divisional of co-pending application Ser. No. 10/742,670, entitled “Combination Conductor-Antenna” by inventors Williams, Baker and Schroeder, filed on Dec. 19, 2003, for which the earlier effective filing date is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
3649742 | Tissot | Mar 1972 | A |
4047464 | Fredriksson et al. | Sep 1977 | A |
4148543 | Shores | Apr 1979 | A |
4465985 | Milligan | Aug 1984 | A |
4490002 | Fowler | Dec 1984 | A |
4508404 | Frawley | Apr 1985 | A |
4757324 | Dhanjal | Jul 1988 | A |
4792814 | Ebisui | Dec 1988 | A |
4864318 | Iwasaki et al. | Sep 1989 | A |
4972199 | Raghavan et al. | Nov 1990 | A |
5200757 | Jairam | Apr 1993 | A |
5245353 | Gould | Sep 1993 | A |
5426442 | Haas | Jun 1995 | A |
5478028 | Snyder | Dec 1995 | A |
5652404 | Girard | Jul 1997 | A |
5710388 | Hutchinson | Jan 1998 | A |
5962806 | Coakley et al. | Oct 1999 | A |
6118412 | Chen | Sep 2000 | A |
6215457 | Losey | Apr 2001 | B1 |
6254394 | Draper et al. | Jul 2001 | B1 |
6281855 | Aoki | Aug 2001 | B1 |
6452561 | West et al. | Sep 2002 | B1 |
6501417 | Bowlds | Dec 2002 | B1 |
6507323 | West | Jan 2003 | B1 |
6604946 | Oakes | Aug 2003 | B2 |
6813964 | Clark et al. | Nov 2004 | B1 |
6892644 | Rastegar et al. | May 2005 | B2 |
7291014 | Chung et al. | Nov 2007 | B2 |
20030060288 | Oakes | Mar 2003 | A1 |
20030210170 | Krikorian et al. | Nov 2003 | A1 |
20040257284 | Rada et al. | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070238412 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10742670 | Dec 2003 | US |
Child | 11456792 | US |