The invention relates to a combination heat exchanger, for a motor vehicle, having an end tank assembly that includes an integrated plastic tank mated to a metal header with an improved gasket therebetween; more particularly, where the improved gasket is formed of cure-in-place elastomer having varying compression ratios.
Radiators are commonly used in automobiles having an internal combustion engine to convey heat away from hot engine components to the cooler ambient air. A radiator is part of a closed loop system wherein the radiator is hydraulically connected to passageways within an engine through which a heat transfer fluid, such as a mixture of water and ethylene glycol, is circulated.
A typical radiator is formed of a central core having a multitude of parallel tubes with fins therebetween to increase the surface area for optimal heat dissipation. Hydraulically attached to either end of the core that corresponds with the tube openings is an end tank. After absorbing heat from a heat source, the heat transfer fluid enters a first end tank where the fluid flow is uniformly distributed through the parallel tubes. As the fluid flows through the parallel tubes to the second end tank, heat is radiated to the ambient air. To assist in the heat transfer, a stream of ambient air is blown perpendicularly relative to the radiator core through the fins. The cooled heat transfer fluid then exits the second end tank returning to the heat source to repeat the heat transfer process.
Some motor vehicles have multiple radiators to cool a plurality of heat sources such as an internal combustion engine, transmission, electronic components, and charge air coolers. Typically, to meet the packaging requirements of a vehicle's engine compartment, the multiple radiators are stacked. A major draw back of stacking radiators is a decrease of heat transfer efficiency due to the increased pressure drop through the stack of radiators. There are other drawbacks of utilizing multiple radiators such as increase in vehicle weight, systems complexity, and manufacturing cost.
To address the shortcomings of using multiple radiators, it is known in the art to combine individual radiators utilizing a common core. Shown in
For a combination radiator used to dissipate heat from two different heat sources in a vehicle, the first heat transfer fluid from the first heat source (not shown) enters the first inlet 90a to compartment 50a, travels through tubes 20 to compartment 50b, and then exits first outlet 90b returning to the first heat source. The second heat transfer fluid from the second heat source (not shown) enters the second inlet 95a to compartment 60a, travels through tubes 20 to compartment 60b, and exits second outlet 95b returning to the second heat source. The two heat transfer fluids are cooled by the same airflow which sweeps through core 10.
Utilizing a combination radiator to dissipate heat from multiple heat transfer fluids having different thermal and pressure cycle requirements may result in failure of structural integrity in transverse partitions 40a, 40b. The expansion differential between compartments 50a, 60a of an end tank 30a caused by the difference in temperature and pressure of the respective heat transfer fluids increases the stress on transverse partition 40a. Due to excessive stress, transverse partition 40a may fail thereby allowing the heat transfer fluids to intermingle resulting in potential damage to the heat sources being cooled. Furthermore, transverse partitions 40a, 40b does not offer a significant thermal barrier between the two different heat transfer fluids thereby resulting in decrease efficiency of heat dissipation of the cooler heat source.
For a combination radiator dissipating heat from heat transfer fluids with significantly different thermal and pressure cycle requirements, there is a need for a combination radiator with an end tank assembly with a robust separator that offers superior structural integrity and thermal isolation. There also exists a need that the end tank assembly can be manufactured easily and economically.
The invention relates to a combination heat exchanger, for a motor vehicle with an internal combustion engine, having an end tank assembly that includes a single piece integrated plastic tank mated to a metal header with an improved gasket therebetween. More particularly, the improved gasket is formed of cure-in-place elastomer, preferably silicone, having varying compression ratios.
The combination heat exchanger includes a heat exchange core having a bundle of tubes that are substantially parallel. The tubes are joint together longitudinally with heat dissipating fins. The core has two core ends, where each of the core ends is attached to an end tank assembly.
The end tank assembly includes a one piece integrated plastic tank, wherein the tank has two side walls connected to a bottom wall along a longitudinal axis, and two end walls along a latitudinal axis defining an elongated cavity. The exterior edges of the side walls and end walls define a perimeter edge. Within the elongated cavity are two bulkheads situated along a latitudinal axis dividing the elongated cavity into a first chamber, a second chamber, and a third chamber. Reinforcing the two bulkheads is a rib buttressing the two bulkheads with the bottom wall.
Also part of the end tank assembly is a metal header plate, preferably aluminum, engaged between each of the end tanks and core ends. The header plate has stamped perforations to accommodate the tubes openings. The tubes are attached to the header plate by conventional means such as brazing or soldering. The header plate is then mated to the plastic tank by mechanical means with a gasket therebetween.
Located between the integrated plastic tank and header plate is an elastomer gasket, preferably silicone. The gasket is applied on the perimeter edge of the end tank and exterior edges of the bulk heads, and then cured-in-place before the end tank is mated to the header plate by mechanical means.
The header plate has a stage portion with latitudinal pockets to cooperate with the exterior edges of the bulkheads to define a first spatial distance with respect to the gasket therein. The header plate also has an annular planar surface to cooperate with the perimeter edge of the end tank to define a second spatial distance with respect to the gasket therein. The first spatial distance is less than the second spatial distance, thereby resulting in a greater compression ratio of the gasket located within the first spatial distance relative to the compression ratio of the gasket located within the second spatial distance. More specifically, the compression ratio of the gasket on the exterior edges of the bulkhead is greater than the compression ratio of the gasket on the perimeter edge of the end tank.
The greater compression ratio of the gasket between the exterior edges of the bulkheads and lateral pockets of the header plate allows for a more robust seal between chambers. Robust seals are required along bulkheads to withstand stresses resulting from expansion differential between chambers within an end tank of a combination heat exchanger that houses heat transfer fluids with different temperature and pressure cycle requirements.
The objects, features and advantages of the present invention will become apparent to those skilled in the art from analysis of the following written description, the accompanying drawings and claims.
The accompanying drawings illustrate a prior art combination heat exchanger and preferred embodiments of the present invention that will be further described with reference to the following figures.
In reference to
Each core end is attached to end tank assembly 105 that comprises of end tank 150, a gasket 280, and a header plate 270. The tube openings 145 are affixed to perforations 620 located on the header plate 270 by conventional means such as welding, brazing or soldering. Header plate 270 is mechanically attached to end tank 150 with gasket 280 between the contact surfaces of header plate 270 and end tank 150.
In reference to
Within the elongated cavity 210 are two bulkheads 220a, 220b situated along a latitudinal axis 200 dividing the elongated cavity 210 into a first chamber 230, a second chamber 240, and a third chamber 250. The heights of the bulkheads are less that heights of the side and end walls. Height of bulkhead is show as distance A and heights of walls are show as distance B in
The volume distribution for each chamber, which is dictated by the number tubes 120 required to be in communication with each of the three chambers for the desired heat transfer requirements, can be adjusted by varying the placement of the bulkheads 220a, 220b along the longitudinal axis 180. The greater the temperature variation between first chamber 240 and third chamber 250, the greater the distance required between bulkheads for thermal isolation.
In reference to
Reinforcing the two bulkheads is rib 410 integrally connecting bulkheads 220a, 220b with bottom wall 170. Rib 410 is located along the longitudinal axis 180 in the second chamber 240.
Also located within second chamber 240 is a mean to detect leaks from first chamber 230 and third chamber 250 into the second chamber 240. The means can include a mechanical or electrical sensing device; however, the preferred mean is an outlet 420 on a side walls between the bulkheads. A breach in integrity of either one of the bulkheads will result in heat transfer fluid filling second chamber 240 and then discharging through outlet 420. The direct discharge of the heat transfer fluid from either one of the bulkheads prevents intermingling of heat exchanger fluids and allows for economical leak detection since no additional hardware is required.
End tank 150 having bulkheads 220a, 220b, rib 410, and outlet 420 is formed of plastic, preferably nylon, and it is a seamless integrated one piece unit. End tank 150 can be manufactured by conventional means such plastic injection molding.
In reference to
In reference to
It is desirable for the knit lines 500 of the gaskets to overlap on the exterior edges of the bulkheads 320a, 320b. The overlapping of the knit lines 500 provides additional gasket material to allow for greater compression ratio of the gasket on the edges of the bulk heads 320a, 320b. The higher compression ratio of the gasket provides greater seal integrity between the bulkheads with the header plate 270. It is optional to provide gasket on the portion of the perimeter edge that is part of the side wall of the second chamber located between the bulk heads.
The Compression Ratio of the gasket is defined as the ratio between the Compression Squeeze and the original cross-section of the gasket. The compression ratio is typically expressed as a percentage.
Compression Squeeze=original cross section−compressed cross section
Compression Ration (%)=(compression squeeze/original cross section)×100
Reference to
The first spatial distance X is less than the second spatial distance Y, thereby resulting in a greater compression ratio of the gasket located within the first spatial distance relative to the compression ratio of the gasket located within the second spatial distance. More specifically, the compression ratio of the gasket on the exterior edges of the bulkhead is greater than the compression ratio of the gasket on the perimeter edge of the end tank as shown in
The greater compression ratio of the gasket between the exterior edges of the bulkheads and lateral pockets of the header plate allows for a more robust seal between chambers. Robust seals are required along bulkheads to withstand expansion differential stresses associated with combination heat exchanger that houses heat transfer fluids with different temperature and pressure cycle requirements.
Referring to
Shown in
Referring to
Referring to
The compression ratio of the gasket along the exterior edges of the bulkheads is determined by the spatial distance between the bulkheads and the latitudinal pockets of the header plate, shown as distance X in
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
2037845 | Young | Apr 1936 | A |
4781320 | Fujiyoshi | Nov 1988 | A |
4817967 | Belter | Apr 1989 | A |
4926934 | Ivy | May 1990 | A |
5031924 | Beatenbough et al. | Jul 1991 | A |
5195581 | Puntambekar et al. | Mar 1993 | A |
5311934 | Potier | May 1994 | A |
6189606 | Chevallier | Feb 2001 | B1 |
6394176 | Marsais | May 2002 | B1 |
6722660 | Gernand et al. | Apr 2004 | B2 |
6883600 | Mano et al. | Apr 2005 | B2 |
6938675 | Kokubunji et al. | Sep 2005 | B2 |
7025128 | Kamiyama et al. | Apr 2006 | B2 |
20060037740 | Durr et al. | Feb 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080047687 A1 | Feb 2008 | US |